Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xuebinqin/basnet
Code for CVPR 2019 paper. BASNet: Boundary-Aware Salient Object Detection
https://github.com/xuebinqin/basnet
Last synced: 5 days ago
JSON representation
Code for CVPR 2019 paper. BASNet: Boundary-Aware Salient Object Detection
- Host: GitHub
- URL: https://github.com/xuebinqin/basnet
- Owner: xuebinqin
- License: mit
- Created: 2019-03-29T20:53:30.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2023-09-10T11:28:16.000Z (over 1 year ago)
- Last Synced: 2024-10-29T17:56:06.425Z (2 months ago)
- Language: Python
- Homepage:
- Size: 3.53 MB
- Stars: 1,382
- Watchers: 35
- Forks: 249
- Open Issues: 21
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# BASNet (New Version May 2nd, 2021)
'[Boundary-Aware Segmentation Network for
Mobile and Web Applications](https://arxiv.org/pdf/2101.04704.pdf)', Xuebin Qin, Deng-Ping Fan, Chenyang Huang, Cyril Diagne, Zichen Zhang,
Adria Cabeza Sant’Anna, Albert Suarez, Martin Jagersand, and Ling Shao.## Salient Object Detection(SOD) Qualitative Comparison
![SOD Qualitative Comparison](figures/sod_qual_comp.PNG)## Salient Objects in Clutter(SOC) Qualitative Comparison
![SOC Qualitative Comparison](figures/soc_qual_comp.PNG)## Camouflaged Object Detection(COD) Qualitative Comparison
![COD Qualitative Comparison](figures/cod_qual_comp.PNG)## Predicted maps of SOD, SOC and COD datasets
[SOD Results will come soon!]() \
[SOC Results will come soon!]() \
[COD Results](https://drive.google.com/file/d/12jijUPpdOe7k2O1YcLbkJHyXCJb3MRMN/view?usp=sharing)# BASNet (CVPR 2019)
Code for CVPR 2019 paper '[*BASNet: Boundary-Aware Salient Object Detection*](http://openaccess.thecvf.com/content_CVPR_2019/html/Qin_BASNet_Boundary-Aware_Salient_Object_Detection_CVPR_2019_paper.html) [code](https://github.com/NathanUA/BASNet)', [Xuebin Qin](https://webdocs.cs.ualberta.ca/~xuebin/), [Zichen Zhang](https://webdocs.cs.ualberta.ca/~zichen2/), [Chenyang Huang](https://chenyangh.com/), [Chao Gao](https://cgao3.github.io/), [Masood Dehghan](https://sites.google.com/view/masooddehghan) and [Martin Jagersand](https://webdocs.cs.ualberta.ca/~jag/).__Contact__: xuebin[at]ualberta[dot]ca
## (2020-May-09) NEWS! Our new Salient Object Detection model (U^2-Net), which is just accepted by Pattern Recognition, is available now!
[U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection](https://github.com/NathanUA/U-2-Net)## Evaluation
[Evaluation Code](https://github.com/NathanUA/Binary-Segmentation-Evaluation-Tool)## Required libraries
Python 3.6
numpy 1.15.2
scikit-image 0.14.0
PIL 5.2.0
PyTorch 0.4.0
torchvision 0.2.1
globThe SSIM loss is adapted from [pytorch-ssim](https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py).
## Usage
1. Clone this repo
```
git clone https://github.com/NathanUA/BASNet.git
```
2. Download the pre-trained model basnet.pth from [GoogleDrive](https://drive.google.com/open?id=1s52ek_4YTDRt_EOkx1FS53u-vJa0c4nu) or [baidu](https://pan.baidu.com/s/1PrsBdepwrkMWPLSW22FhAg) extraction code: 6phq, and put it into the dirctory 'saved_models/basnet_bsi/'3. Cd to the directory 'BASNet', run the training or inference process by command: ```python basnet_train.py```
or ```python basnet_test.py``` respectively.We also provide the predicted saliency maps ([GoogleDrive](https://drive.google.com/file/d/1K9y9HpupXT0RJ4U4OizJ_Uk5byUyCupK/view?usp=sharing),[Baidu](https://pan.baidu.com/s/1FJKVO_9YrP7Iaz7WT6Xdhg)) for datasets SOD, ECSSD, DUT-OMRON, PASCAL-S, HKU-IS and DUTS-TE.
## Architecture
![BASNet architecture](figures/architecture.png)
## Quantitative Comparison
![Quantitative Comparison](figures/quan.png)
## Qualitative Comparison
![Qualitative Comparison](figures/qual.png)
## Citation
```
@article{DBLP:journals/corr/abs-2101-04704,
author = {Xuebin Qin and
Deng{-}Ping Fan and
Chenyang Huang and
Cyril Diagne and
Zichen Zhang and
Adri{\`{a}} Cabeza Sant'Anna and
Albert Su{\`{a}}rez and
Martin J{\"{a}}gersand and
Ling Shao},
title = {Boundary-Aware Segmentation Network for Mobile and Web Applications},
journal = {CoRR},
volume = {abs/2101.04704},
year = {2021},
url = {https://arxiv.org/abs/2101.04704},
archivePrefix = {arXiv},
}
```## Citation
```
@InProceedings{Qin_2019_CVPR,
author = {Qin, Xuebin and Zhang, Zichen and Huang, Chenyang and Gao, Chao and Dehghan, Masood and Jagersand, Martin},
title = {BASNet: Boundary-Aware Salient Object Detection},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
```