Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/xvjiarui/gcnet
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
https://github.com/xvjiarui/gcnet
computer-vision deep-learning instance-segmentation object-detection
Last synced: 3 days ago
JSON representation
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
- Host: GitHub
- URL: https://github.com/xvjiarui/gcnet
- Owner: xvjiarui
- License: apache-2.0
- Created: 2019-04-25T13:01:24.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2021-02-16T05:05:58.000Z (almost 4 years ago)
- Last Synced: 2025-01-12T09:04:24.347Z (10 days ago)
- Topics: computer-vision, deep-learning, instance-segmentation, object-detection
- Language: Python
- Homepage:
- Size: 3.13 MB
- Stars: 1,198
- Watchers: 21
- Forks: 165
- Open Issues: 28
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# GCNet for Object Detection
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/global-context-networks/object-detection-on-coco-minival)](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=global-context-networks)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/global-context-networks/instance-segmentation-on-coco-minival)](https://paperswithcode.com/sota/instance-segmentation-on-coco-minival?p=global-context-networks)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/global-context-networks/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=global-context-networks)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/global-context-networks/instance-segmentation-on-coco)](https://paperswithcode.com/sota/instance-segmentation-on-coco?p=global-context-networks)By [Yue Cao](http://yue-cao.me), [Jiarui Xu](http://jerryxu.net), [Stephen Lin](https://scholar.google.com/citations?user=c3PYmxUAAAAJ&hl=en), Fangyun Wei, [Han Hu](https://sites.google.com/site/hanhushomepage/).
This repo is a official implementation of ["GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond"](https://arxiv.org/abs/1904.11492) on COCO object detection based on open-mmlab's [mmdetection](https://github.com/open-mmlab/mmdetection). The core operator GC block could be find [here](https://github.com/xvjiarui/GCNet/blob/master/mmdet/ops/gcb/context_block.py).
Many thanks to mmdetection for their simple and clean framework.*Update on 2020/12/07*
The extension of GCNet got accepted by TPAMI ([PDF](https://arxiv.org/pdf/2012.13375.pdf)).
*Update on 2019/10/28*
GCNet won the **Best Paper Award** at ICCV 2019 Neural Architects Workshop!
*Update on 2019/07/01*
The code is refactored.
More results are provided and all configs could be found in `configs/gcnet`.**Notes**: Both PyTorch official SyncBN and Apex SyncBN have some stability issues.
During training, mAP may drops to zero and back to normal during last few epochs.*Update on 2019/06/03*
GCNet is supported by the official mmdetection repo [here](https://github.com/open-mmlab/mmdetection/tree/master/configs/gcnet).
Thanks again for open-mmlab's work on open source projects.## Introduction
**GCNet** is initially described in [arxiv](https://arxiv.org/abs/1904.11492). Via absorbing advantages of Non-Local Networks (NLNet) and Squeeze-Excitation Networks (SENet), GCNet provides a simple, fast and effective approach for global context modeling, which generally outperforms both NLNet and SENet on major benchmarks for various recognition tasks.
## Citing GCNet
```
@article{cao2019GCNet,
title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond},
author={Cao, Yue and Xu, Jiarui and Lin, Stephen and Wei, Fangyun and Hu, Han},
journal={arXiv preprint arXiv:1904.11492},
year={2019}
}
```## Main Results
### Results on R50-FPN with backbone (fixBN)
| Back-bone | Model | Back-bone Norm | Heads | Context | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:----------------:|:-------------:|:----------------:|:--------------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R50-FPN | Mask | fixBN | 2fc (w/o BN) | - | 1x | 3.9 | 0.453 | 10.6 | 37.3 | 34.2 | [model](https://1drv.ms/u/s!AkEXj14LxwVpffUWWM4A0tFYYCk?e=IM6zgo)|
| R50-FPN | Mask | fixBN | 2fc (w/o BN) | GC(c3-c5, r16) | 1x | 4.5 | 0.533 | 10.1 | 38.5 | 35.1 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r16_gcb_c3-c5_r50_fpn_1x_20190602-c550c707.pth)|
| R50-FPN | Mask | fixBN | 2fc (w/o BN) | GC(c3-c5, r4) | 1x | 4.6 | 0.533 | 9.9 | 38.9 | 35.5 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r4_gcb_c3-c5_r50_fpn_1x_20190602-18ae2dfd.pth)|
| R50-FPN | Mask | fixBN | 2fc (w/o BN) | - | 2x | - | - | - | 38.2 | 34.9 | [model](https://1drv.ms/u/s!AkEXj14LxwVpf7epsyY_qoEN9Eg?e=CqN9yI)|
| R50-FPN | Mask | fixBN | 2fc (w/o BN) | GC(c3-c5, r16) | 2x | - | - | - | 39.7 | 36.1 | [model](https://1drv.ms/u/s!AkEXj14LxwVpfFrg1q0y6j6KKy4?e=NdeFXG)|
| R50-FPN | Mask | fixBN | 2fc (w/o BN) | GC(c3-c5, r4) | 2x | - | - | - | 40.0 | 36.2 | [model](https://1drv.ms/u/s!AkEXj14LxwVpfllzv_nSW9WnDQ8?e=OzaGaL)|### Results on R50-FPN with backbone (syncBN)
| Back-bone | Model | Back-bone Norm | Heads | Context | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:----------------:|:-------------:|:----------------:|:--------------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R50-FPN | Mask | SyncBN | 2fc (w/o BN) | - | 1x | 3.9 | 0.543 | 10.2 | 37.2 | 33.8 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r50_fpn_syncbn_1x_20190602-bccc62fa.pth)|
| R50-FPN | Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r16) | 1x | 4.5 | 0.547 | 9.9 | 39.4 | 35.7 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r16_gcb_c3-c5_r50_fpn_syncbn_1x_20190602-a0169c20.pth)|
| R50-FPN | Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r4) | 1x | 4.6 | 0.603 | 9.4 | 39.9 | 36.2 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r4_gcb_c3-c5_r50_fpn_syncbn_1x_20190602-ace08792.pth)|
| R50-FPN | Mask | SyncBN | 2fc (w/o BN) | - | 2x | 3.9 | 0.543 | 10.2 | 37.7 | 34.3 | [model](https://1drv.ms/u/s!AkEXj14LxwVpgQART6Djedy3UeL7?e=MvalDU)|
| R50-FPN | Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r16) | 2x | 4.5 | 0.547 | 9.9 | 39.7 | 36.0 | [model](https://1drv.ms/u/s!AkEXj14LxwVpgQJHhiNkyVHcbHab?e=qiZ97L)|
| R50-FPN | Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r4) | 2x | 4.6 | 0.603 | 9.4 | 40.2 | 36.3 | [model](https://1drv.ms/u/s!AkEXj14LxwVpgQEBgYg6XZnder10?e=VeeWeq)|
| R50-FPN | Mask | SyncBN | 4conv1fc (SyncBN) | - | 1x | - | - | - | 38.8 | 34.6 | [model](https://1drv.ms/u/s!AkEXj14LxwVpgQTW281dmK9sfiA1?e=xwK5Tw)|
| R50-FPN | Mask | SyncBN | 4conv1fc (SyncBN) | GC(c3-c5, r16) | 1x | - | - | - | 41.0 | 36.5 | [model](https://1drv.ms/u/s!AkEXj14LxwVpgQOpmj-j0ctBAZog?e=q9pu4D)|
| R50-FPN | Mask | SyncBN | 4conv1fc (SyncBN) | GC(c3-c5, r4) | 1x | - | - | - | 41.4 | 37.0 | [model](https://1drv.ms/u/s!AkEXj14LxwVpgQW2a6BmnRJhqWbe?e=ECVmTx)|### Results on stronger backbones
| Back-bone | Model | Back-bone Norm | Heads | Context | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:----------------:|:-------------:|:----------------:|:--------------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R101-FPN | Mask | fixBN | 2fc (w/o BN) | - | 1x | 5.8 | 0.571 | 9.5 | 39.4 | 35.9 | [model](https://1drv.ms/u/s!AkEXj14LxwVpcZ9zKY77ptT4l9U?e=Xgm8j3)|
| R101-FPN | Mask | fixBN | 2fc (w/o BN) | GC(c3-c5, r16) | 1x | 7.0 | 0.731 | 8.6 | 40.8 | 37.0 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r16_gcb_c3-c5_r101_fpn_1x_20190602-f4456442.pth)|
| R101-FPN | Mask | fixBN | 2fc (w/o BN) | GC(c3-c5, r4) | 1x | 7.1 | 0.747 | 8.6 | 40.8 | 36.9 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r4_gcb_c3-c5_r101_fpn_1x_20190602-1ee20d5f.pth)|
| R101-FPN | Mask | SyncBN | 2fc (w/o BN) | - | 1x | 5.8 | 0.665 | 9.2 | 39.8 | 36.0 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r101_fpn_syncbn_1x_20190602-b2a0e2b7.pth)|
| R101-FPN | Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r16) | 1x | 7.0 | 0.778 | 9.0 | 41.1 | 37.4 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r16_gcb_c3-c5_r101_fpn_syncbn_1x_20190602-717e6dbd.pth)|
| R101-FPN | Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r4) | 1x | 7.1 | 0.786 | 8.9 | 41.7 | 37.6 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r4_gcb_c3-c5_r101_fpn_syncbn_1x_20190602-a893c718.pth)|
| X101-FPN | Mask | SyncBN | 2fc (w/o BN) | - | 1x | 7.1 | 0.912 | 8.5 | 41.2 | 37.3 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn_1x_20190602-bb8ae7e5.pth)|
| X101-FPN | Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r16) | 1x | 8.2 | 1.055 | 7.7 | 42.4 | 38.0 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r16_gcb_c3-c5_x101_32x4d_fpn_syncbn_1x_20190602-c28edb53.pth)|
| X101-FPN | Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r4) | 1x | 8.3 | 1.037 | 7.6 | 42.9 | 38.5 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/mask_rcnn_r4_gcb_c3-c5_x101_32x4d_fpn_syncbn_1x_20190602-930b3d51.pth)|
| X101-FPN | Cascade Mask | SyncBN | 2fc (w/o BN) | - | 1x | - | - | - | 44.7 | 38.3 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn_1x_20190602-63a800fb.pth)|
| X101-FPN | Cascade Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r16) | 1x | - | - | - | 45.9 | 39.3 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/cascade_mask_rcnn_r16_gcb_c3-c5_x101_32x4d_fpn_syncbn_1x_20190602-3e168d88.pth)|
| X101-FPN | Cascade Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r4) | 1x | - | - | - | 46.5 | 39.7 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/cascade_mask_rcnn_r4_gcb_c3-c5_x101_32x4d_fpn_syncbn_1x_20190602-b579157f.pth)|
| X101-FPN | DCN Cascade Mask | SyncBN | 2fc (w/o BN) | - | 1x | - | - | - | 47.1 | 40.4 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/cascade_mask_rcnn_dconv_c3-c5_x101_32x4d_fpn_syncbn_1x_20190602-9aa8c394.pth)|
| X101-FPN | DCN Cascade Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r16) | 1x | - | - | - | 47.9 | 40.9 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/cascade_mask_rcnn_r16_gcb_dconv_c3-c5_x101_32x4d_fpn_syncbn_1x_20190602-b86027a6.pth)|
| X101-FPN | DCN Cascade Mask | SyncBN | 2fc (w/o BN) | GC(c3-c5, r4) | 1x | - | - | - | 47.9 | 40.8 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/gcnet/cascade_mask_rcnn_r4_gcb_dconv_c3-c5_x101_32x4d_fpn_syncbn_1x_20190602-b4164f6b.pth)|**Notes**
- `GC` denotes Global Context (GC) block is inserted after 1x1 conv of backbone.
- `DCN` denotes replace 3x3 conv with 3x3 Deformable Convolution in `c3-c5` stages of backbone.
- `r4` and `r16` denote ratio 4 and ratio 16 in GC block respectively.
- Some of models are trained on 4 GPUs with 4 images on each GPU.## Requirements
- Linux(tested on Ubuntu 16.04)
- Python 3.6+
- PyTorch 1.1.0
- Cython
- [apex](https://github.com/NVIDIA/apex) (Sync BN)## Install
a. Install PyTorch 1.1 and torchvision following the [official instructions](https://pytorch.org/).
b. Install latest apex with CUDA and C++ extensions following this [instructions](https://github.com/NVIDIA/apex#quick-start).
The [Sync BN](https://nvidia.github.io/apex/parallel.html#apex.parallel.SyncBatchNorm) implemented by apex is required.c. Clone the GCNet repository.
```bash
git clone https://github.com/xvjiarui/GCNet.git
```d. Compile cuda extensions.
```bash
cd GCNet
pip install cython # or "conda install cython" if you prefer conda
./compile.sh # or "PYTHON=python3 ./compile.sh" if you use system python3 without virtual environments
```e. Install GCNet version mmdetection (other dependencies will be installed automatically).
```bash
python(3) setup.py install # add --user if you want to install it locally
# or "pip install ."
```Note: You need to run the last step each time you pull updates from github.
Or you can run `python(3) setup.py develop` or `pip install -e .` to install mmdetection if you want to make modifications to it frequently.Please refer to mmdetection install [instruction](https://github.com/open-mmlab/mmdetection/blob/master/INSTALL.md) for more details.
## Environment
### Hardware
- 8 NVIDIA Tesla V100 GPUs
- Intel Xeon 4114 CPU @ 2.20GHz### Software environment
- Python 3.6.7
- PyTorch 1.1.0
- CUDA 9.0
- CUDNN 7.0
- NCCL 2.3.5## Usage
### Train
As in original mmdetection, distributed training is recommended for either single machine or multiple machines.
```bash
./tools/dist_train.sh [optional arguments]
```Supported arguments are:
- --validate: perform evaluation every k (default=1) epochs during the training.
- --work_dir : if specified, the path in config file will be replaced.### Evaluation
To evaluate trained models, output file is required.
```bash
python tools/test.py [optional arguments]
```Supported arguments are:
- --gpus: number of GPU used for evaluation
- --out: output file name, usually ends wiht `.pkl`
- --eval: type of evaluation need, for mask-rcnn, `bbox segm` would evaluate both bounding box and mask AP.