https://github.com/y-t-g/coffee-bean-defect-anomalib
Coffee bean defect detection using Anomalib
https://github.com/y-t-g/coffee-bean-defect-anomalib
Last synced: 3 months ago
JSON representation
Coffee bean defect detection using Anomalib
- Host: GitHub
- URL: https://github.com/y-t-g/coffee-bean-defect-anomalib
- Owner: Y-T-G
- License: mit
- Created: 2024-01-06T18:44:15.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-01-07T10:12:28.000Z (over 1 year ago)
- Last Synced: 2025-02-08T21:25:16.704Z (4 months ago)
- Language: Jupyter Notebook
- Size: 399 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Coffee Bean Defect Detection Using Anomalib

## Training
1. Install requirements:
```bash
pip install -r requirements.txt
```2. Set the API key for Roboflow in `train.py`:
`rf = Roboflow(api_key="API")`3. Run training:
```bash
python train.py
```4. Perform inference using inferencer:
```bash
python gradio_inferencer.py --weights results/custom/run/weights/torch/model.pt
```## Acknowledgement
Dataset: [USK-Coffee](https://universe.roboflow.com/yolo-annotated-dataset/usk-coffe)