Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yabufarha/anticipating-activities
https://github.com/yabufarha/anticipating-activities
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/yabufarha/anticipating-activities
- Owner: yabufarha
- License: other
- Created: 2018-03-26T05:51:01.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2021-08-16T08:45:30.000Z (over 3 years ago)
- Last Synced: 2024-08-04T22:14:48.762Z (5 months ago)
- Language: Python
- Size: 13.7 KB
- Stars: 77
- Watchers: 4
- Forks: 19
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# When will you do what? - Anticipating Temporal Occurrences of Activities
This repository provides a TensorFlow implementation of the paper [When will you do what? - Anticipating Temporal Occurrences of Activities](https://pages.iai.uni-bonn.de/gall_juergen/download/jgall_anticipation_cvpr18.pdf).
### Qualitative Results:
Click on the image.
### Training:
* download the data from https://uni-bonn.sciebo.de/s/3Wyqu3cxYSm47Kg.
* extract it so that you have the `data` folder in the same directory as `main.py`.
* To train the model on split1 of Breakfast dataset run `python main.py --model=MODEL --action=train --vid_list_file=./data/train.split1.bundle` where `MODEL` is `cnn` or `rnn`.
* To change the default saving directory or the model parameters, check the list of options by running `python main.py -h`.### Prediction:
* Run `python main.py --model=MODEL --action=predict --vid_list_file=./data/test.split1.bundle` for evaluating the the model on split1 of Breakfast.
* To predict from ground truth observation set `--input_type` option to `gt`.
* To check the list of options run `python main.py -h`.### Evaluation:
Run `python eval.py --obs_perc=OBS-PERC --recog_dir=RESULTS-DIR`. Where `RESULTS-DIR` contains the output predictions for a specific observation and prediction percentage, and `OBS-PERC` is the corresponding observation percentage. For example `python eval.py --obs_perc=.3 --recog_dir=./save_dir/results/rnn/obs0.3-pred0.5` will evaluate the output corresponding to 0.3 observation and 0.5 prediction.
### Remarks:
If you use the code, please cite
Y. Abu Farha, A. Richard, J. Gall:
When will you do what? - Anticipating Temporal Occurrences of Activities
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018To download the used features please visit:
[An end-to-end generative framework for video segmentation and recognition](https://hildekuehne.github.io/projects/end2end/index.html).