An open API service indexing awesome lists of open source software.

https://github.com/yaffle/expression

A library to parse expressions, solve and simplify systems of linear equations, find eigenvalues and eigenvectors
https://github.com/yaffle/expression

expression math matrix parser polynomial symbolic-computation

Last synced: 10 months ago
JSON representation

A library to parse expressions, solve and simplify systems of linear equations, find eigenvalues and eigenvectors

Awesome Lists containing this project

README

          

It is a homemade library for JavaScript.
It can parse expressions, solve and simplify systems of linear equations, find eigenvalues and eigenvectors,
or calculate real roots of polynomials with integer coefficients for a specified accuracy.

Installation
============
`npm install @yaffle/expression`
or
`npm install Yaffle/Expression`

Usage example
=============

example.mjs:

```javascript

import {ExpressionParser, Polynomial, Expression} from './node_modules/@yaffle/expression/index.js';

// Exact polynomial roots can be found for some polynomials:
var p = Polynomial.toPolynomial(ExpressionParser.parse("10x^5−17x^4−505x^3+1775x^2−249x−630"), ExpressionParser.parse("x"));
console.log(p.getroots().toString()); // -1/2,5,21/5,(-73^0.5-7)/2,(73^0.5-7)/2

// Polynomial roots:
var p = Polynomial.toPolynomial(ExpressionParser.parse("x^5−2x^4−11x^3+26x^2−2x−13"), ExpressionParser.parse("x"));
console.log(p.getZeros().map(x => x.toString({rounding: {fractionDigits: 20}})).toString()); // -3.41190231035920486644,-0.60930943815581736137,1.07534597839596488553,1.92498144931467217779,3.02088432080438516449

// parse a matrix from a string:
var matrix = ExpressionParser.parse('{{1,2,3},{4,5,6},{7,8,9}}').matrix;
console.log('matrix: ' + matrix.toString()); // matrix: {{1,2,3},{4,5,6},{7,8,9}}

var eigenvalues = Expression.getEigenvalues(matrix);
console.log('eigenvalues: ' + eigenvalues.toString()); // eigenvalues: 0,(-3*33^0.5+15)/2,(3*33^0.5+15)/2
console.log('eigenvalues: ' + eigenvalues.map(x => x.toMathML({rounding: {fractionDigits: 10}}))); // eigenvalues: 0,−1.1168439698,16.1168439698

var eigenvectors = Expression.getEigenvectors(matrix, eigenvalues);
console.log('eigenvectors: ' + eigenvectors.toString()); // eigenvectors: {{1},{-2},{1}},{{(-3*33^0.5-11)/22},{(-3*33^0.5+11)/44},{1}},{{(3*33^0.5-11)/22},{(3*33^0.5+11)/44},{1}}

var y = Expression.diagonalize(matrix, eigenvalues, eigenvectors);
console.log('diagonalization: ' + matrix.toString() + ' = ' + y.T.toString() + " * " + y.L.toString() + " * " + y.T_INVERSED.toString()); // diagonalization: {{1,2,3},{4,5,6},{7,8,9}} = {{1,(-3*33^0.5-11)/22,(3*33^0.5-11)/22},{-2,(-3*33^0.5+11)/44,(3*33^0.5+11)/44},{1,1,1}} * {{0,0,0},{0,(-3*33^0.5+15)/2,0},{0,0,(3*33^0.5+15)/2}} * {{1/6,-1/3,1/6},{(-33^0.5-1)/12,(-33^0.5+3)/18,(-33^0.5+15)/36},{(33^0.5-1)/12,(33^0.5+3)/18,(33^0.5+15)/36}}

//var y = Expression.getFormaDeJordan(...);

// Compute the first 100 digits of the square root of 2:
console.log(ExpressionParser.parse('sqrt(2)').toMathML({rounding: {fractionDigits: 100}})); // 1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727

// simplify an expression:
const simplify = ExpressionParser.parse;
console.log(simplify('x * y * -x / (x ^ 2)').toString()) // '-y'

// parsing with substitutions:
var result = ExpressionParser.parse('A*B', new ExpressionParser.Context(function (id) {
if (id === 'A') {
return ExpressionParser.parse('{{1,2},{3,4}}');
}
if (id === 'B') {
return ExpressionParser.parse('{{-4,2},{3,-1}}');
}
})).simplify();
console.log(result.toString());

// Square root of a matrix:
console.log(ExpressionParser.parse('{{33,24},{48,57}}**(1/2)').toString()); // {{5,2},{4,7}}

// Nth-root of a matrix:
console.log(ExpressionParser.parse('{{33,24},{48,57}}**(1/n)').toString()); // {{(3^(4/n)+2*3^(2/n))/3,(3^(4/n)-3^(2/n))/3},{(2*3^(4/n)-2*3^(2/n))/3,(2*3^(4/n)+3^(2/n))/3}}

// Nth-power of a matrix:
console.log(ExpressionParser.parse('{{33,24},{48,57}}**n').toString()); // {{(3^(4*n)+2*3^(2*n))/3,(3^(4*n)-3^(2*n))/3},{(2*3^(4*n)-2*3^(2*n))/3,(2*3^(4*n)+3^(2*n))/3}}

// Note: toLaTeX is deprecated
import './node_modules/@yaffle/expression/toLaTeX.js';
console.log(ExpressionParser.parse('{{1,2},{3,4}}').toLaTeX()); // \begin{pmatrix}1 & 2 \\ 3 & 4\end{pmatrix}

```

to run from a webbrowser create example.mjs (see above), example.html, npm install http-server, npx http-server, and open it in a web browser:
====================================================================================================
```html

```
See the console output.

to run from the node.js create example.mjs (see above), then run:
================================================================
```sh
npm install @yaffle/expression --save
node --experimental-modules example.mjs
```

Types
=====
```
nthRoot(a, n)
primeFactor(a)
Matrix
.I(size)
.Zero(rows, cols)
rows()
cols()
e(row, column) - get element
isSquare()
map(mapFunction)
transpose()
scale(x)
multiply(b)
add(b)
subtract(b)
augment(b)
rowReduce(...)
swapRows(...)
toRowEchelon(...)
determinant()
rank()
inverse()
toString()
pow(n)
eql()
Polynomial
.ZERO
.of(a0, a1, ...)
.from(arrayLike)
.pseudoRemainder(p1, p2)
.polynomialGCD(p1, p2)
.resultant(p1, p2)
.toPolynomial(expression, variable)

#getDegree()
#getCoefficient(index)
#getLeadingCoefficient() - same as p.getCoefficient(p.getDegree())
#getContent()

#add(other)
#multiply(other)
#scale(coefficient)
#shift(n)
#divideAndRemainder(other)
#modularInverse(m)

#getroots()
#getZeros([precision, complex])
#numberOfRoots(interval)
#calcAt(point)

#_exponentiateRoots(n)
#_scaleRoots(s)
#_translateRoots(h)

#factorize() - find some factor of a polynomial with integer coefficients
ExpressionParser
parse(string, context)
Expression
.ZERO
.ONE
.TWO
.TEN
.PI
.E
.I
#add
#subtract
#multiply
#divide
#pow
#equals
#toString()
#toMathML()
#toLaTeX()
Expression.Integer
integer
Expression.Symbol
symbol
Expression.NthRoot
radicand
Expression.Matrix
matrix
Expression.Polynomial
polynomial
Expression.Sin
argument
Expression.Cos
argument
Expression.Complex
real
imaginary
Expression.ExpressionPolynomialRoot
root
```

DEMO
====
[demo page](https://yaffle.github.io/Expression/)

Similar projects
================
* https://coffeequate.readthedocs.io/en/latest/usage/
* http://algebrite.org - this page contains the list of "JavaScript Computer Algebra Systems"
* https://github.com/sloisel/numeric
* https://nerdamer.com/