Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yamaceay/ratingservice


https://github.com/yamaceay/ratingservice

Last synced: 4 days ago
JSON representation

Awesome Lists containing this project

README

        

# Build instructions (copied from microservices-demo development guide)

## Prerequisites

- [Docker for Desktop](https://www.docker.com/products/docker-desktop).
- kubectl (can be installed via `gcloud components install kubectl`)
- [skaffold **2.0+**](https://skaffold.dev/docs/install/) (latest version recommended), a tool that builds and deploys Docker images in bulk.
- A Google Cloud Project with Google Container Registry enabled.
- Enable GCP APIs for Cloud Monitoring, Tracing, Profiler:
```
gcloud services enable monitoring.googleapis.com \
cloudtrace.googleapis.com \
cloudprofiler.googleapis.com
```
- [Minikube](https://minikube.sigs.k8s.io/docs/start/) (optional - see Local Cluster)
- [Kind](https://kind.sigs.k8s.io/) (optional - see Local Cluster)

## Option 1: Google Kubernetes Engine (GKE)

> đź’ˇ Recommended if you're using Google Cloud Platform and want to try it on
> a realistic cluster. **Note**: If your cluster has Workload Identity enabled,
> [see these instructions](https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity#enable)

1. Create a Google Kubernetes Engine cluster and make sure `kubectl` is pointing
to the cluster.

```sh
gcloud services enable container.googleapis.com
```

```sh
gcloud container clusters create demo --enable-autoupgrade \
--enable-autoscaling --min-nodes=3 --max-nodes=10 --num-nodes=5 --zone=us-central1-a
```

```
kubectl get nodes
```

2. Enable Google Container Registry (GCR) on your GCP project and configure the
`docker` CLI to authenticate to GCR:

```sh
gcloud services enable containerregistry.googleapis.com
```

```sh
gcloud auth configure-docker -q
```

3. In the root of this repository, run `skaffold run --default-repo=gcr.io/[PROJECT_ID]`,
where [PROJECT_ID] is your GCP project ID.

This command:

- builds the container images
- pushes them to GCR
- applies the `./kubernetes-manifests` deploying the application to
Kubernetes.

**Troubleshooting:** If you get "No space left on device" error on Google
Cloud Shell, you can build the images on Google Cloud Build: [Enable the
Cloud Build
API](https://console.cloud.google.com/flows/enableapi?apiid=cloudbuild.googleapis.com),
then run `skaffold run -p gcb --default-repo=gcr.io/[PROJECT_ID]` instead.

4. Find the IP address of your application, then visit the application on your
browser to confirm installation.

kubectl get service frontend-external

5. Do not forget to delete the cluster after testing :)

gcloud container clusters delete demo --zone=us-central1-a

## Option 2 - Local Cluster

1. Launch a local Kubernetes cluster with one of the following tools:

- To launch **Minikube** (tested with Ubuntu Linux). Please, ensure that the
local Kubernetes cluster has at least:
- 4 CPUs
- 4.0 GiB memory
- 32 GB disk space

```shell
minikube start --cpus=4 --memory 4096 --disk-size 32g
```

- To launch **Docker for Desktop** (tested with Mac/Windows). Go to Preferences:
- choose “Enable Kubernetes”,
- set CPUs to at least 3, and Memory to at least 6.0 GiB
- on the "Disk" tab, set at least 32 GB disk space

- To launch a **Kind** cluster:

```shell
kind create cluster
```

2. Run `kubectl get nodes` to verify you're connected to the respective control plane.

3. Run `skaffold run` (first time will be slow, it can take ~20 minutes).
This will build and deploy the application. If you need to rebuild the images
automatically as you refactor the code, run `skaffold dev` command.

4. Run `kubectl get pods` to verify the Pods are ready and running.

5. Run `kubectl port-forward deployment/frontend 8080:8080` to forward a port to the frontend service.

6. Navigate to `localhost:8080` to access the web frontend.

## Cleanup

If you've deployed the application with `skaffold run` command, you can run
`skaffold delete` to clean up the deployed resources.