https://github.com/yangfly/sfd.gluoncv
Reproduce SFD face detector using gluon-cv
https://github.com/yangfly/sfd.gluoncv
face-detector gluoncv mxnet sfd
Last synced: 3 days ago
JSON representation
Reproduce SFD face detector using gluon-cv
- Host: GitHub
- URL: https://github.com/yangfly/sfd.gluoncv
- Owner: yangfly
- License: apache-2.0
- Created: 2018-10-19T01:43:31.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-01-06T12:01:57.000Z (over 6 years ago)
- Last Synced: 2024-08-01T22:40:47.547Z (9 months ago)
- Topics: face-detector, gluoncv, mxnet, sfd
- Language: Python
- Size: 1.72 MB
- Stars: 23
- Watchers: 4
- Forks: 7
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-MXNet - S3FD-gluoncv
README
## Description
This work is to reproduce S³FD, a real-time Single Shot Scale-invariant Face Detector.
## Environment
* [mxnet](https://github.com/apache/incubator-mxnet) 1.3.0
* [gluon-cv](https://github.com/dmlc/gluon-cv) 0.4.0
* [MobulaOP](https://github.com/wkcn/MobulaOP) required to build custom c++ operator## Preparation
```
# install MobulaOP following: https://github.com/wkcn/MobulaOP
$$ git clone https://github.com/yangfly/sfd.gluoncv.git
$$ cd sfd.gluoncv
```## Training your own model
1. download [wider face](http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/) dataset into `widerface/downloads/`
```
$$ tree widerface/downloads
widerface/downloads
├── eval_tools.zip
├── Submission_example.zip
├── wider_face_split.zip
├── WIDER_test.zip
├── WIDER_train.zip
└── WIDER_val.zip
```
2. Parpare data: unzip data, annotations and eval_tools
```
$$ python tool/parpare.py
$$ tree widerface -L 1
widerface
├── downloads
├── eval_tools
├── wider_face_split
├── WIDER_train
└── WIDER_val
```
3. Prepare custom val dataset for quick validation (crop and resize to 640)
```
$$ python tool/build_custom_val.py
$$ tree widerface -L 1
widerface
├── downloads
├── eval_tools
├── WIDER_custom
├── wider_face_split
├── WIDER_train
└── WIDER_val
```
4. train vgg16 based sfd with 4 gpus
```
$$ python sfd/train.py
```
more supported base models in `sfd/nn/sfd.py`
5. demo
```
$$ python sfd/demo.py --model models/vgg16/sfd_best.params
```
6. eval on WIDER_val
```
$$ python sfd/eval.py --model models/vgg16/sfd_best.params
```