Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yangjiheng/3DGS_and_Beyond_Docs
This is a collective repository for all 3DGS related progresses in research and industry world
https://github.com/yangjiheng/3DGS_and_Beyond_Docs
Last synced: 16 days ago
JSON representation
This is a collective repository for all 3DGS related progresses in research and industry world
- Host: GitHub
- URL: https://github.com/yangjiheng/3DGS_and_Beyond_Docs
- Owner: yangjiheng
- License: mit
- Created: 2024-06-06T17:40:58.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-08-26T10:24:25.000Z (5 months ago)
- Last Synced: 2024-08-27T12:51:20.360Z (5 months ago)
- Size: 734 KB
- Stars: 228
- Watchers: 10
- Forks: 7
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Text2X-Resources - 3DGS and Beyond Docs
README
#
`3DGS and Beyond Docs`
This is a collection of documents and topics NeRF/3DGS & Beyond channel accumulated, as well as papers in literaure. Since there are lots of papers out there, so we split them into two seperate repositories: [NeRF and Beyond Docs](https://github.com/yangjiheng/nerf_and_beyond_docs) and [3DGS and Beyond Docs](https://github.com/yangjiheng/3DGS_and_Beyond_Docs). Please choose accordingly recarding to your preference.
Some papers we discussed in the group, will be added to the back of the paper with a **Notes** link. You can follow the link to check whether there is topic you are interested in. If not, welcome to join us and ask the question to the crowd. The mighty community might have your answers.
We are actively maintaining this page trying to stay up-to-date and gather important works in a daily basis. We would also like to put as many notes as possible to some works, trying to make it easier to catch up.
Please feel free to join us on WeChat group or start a discussion topic here.
## NeRF/3DGS Book
I have recently published a book with PHEI(Publishing House of Electronics Industry) on NeRF/3DGS. This would not have been possible without the help of the whole 3D vision community. It is now available on jd.com ([Checkout here](https://item.jd.com/10110615626932.html)) and it should be suitable as a reference handbook for NeRF/3DGS beginners or engineers in related areas. I sincerely hope the book can be helpful in any perspective.
For those of you who have already purchased the book, all references can be downloaded [HERE](./assets/book_references.pdf). If you experience any issue reading the book or have any suggestions to improve it, please contact me through my email address: `[email protected]`, or directly concact me on WeChat: `jiheng_yang`. I'm looking forward to talk to anyone reaching out to me, thanks in advance.
## How to join us
For now, you can join us in the following ways
* [Bilibili Channel](https://space.bilibili.com/455056488) where we post near daily updates (primarily) on NeRF.
* WeChat group, due to the limitation of WeChat group, you can add my personal account: `jiheng_yang`, and I will add you to the chat groups.
* If you want to view this from a timeline perspective, please refer to this [ProcessOn Diagram](https://www.processon.com/view/link/643f8907f1144c215788f3e2)
* If you think something is not correct or you think we could do better in some way, please write to us through all possible channels or drop an issue. All suggestions are appreciated!
* For other discussed techniques that's related to 3D reconstruction and NeRF, please refer to [link](./NeRF_Related_Tech.md), we are constantly trying to add more resource to this document.## NeRF Progresses
For NeRF related progress, you can refer to [NeRF and Beyond Docs](https://github.com/yangjiheng/nerf_and_beyond_docs)
Table of Content
- [`3DGS and Beyond Docs`](#3dgs-and-beyond-docs)
- [NeRF/3DGS Book](#nerf3dgs-book)
- [How to join us](#how-to-join-us)
- [NeRF Progresses](#nerf-progresses)
- [3DGS Original Paper](#3dgs-original-paper)
- [3DGS Surveys](#3dgs-surveys)
- [3DGS Frameworks](#3dgs-frameworks)
- [3DGS Profiling](#3dgs-profiling)
- [3DGS Distributed Training](#3dgs-distributed-training)
- [3DGS Quality Enhancement](#3dgs-quality-enhancement)
- [3DGS with Lower Memory Footprint](#3dgs-with-lower-memory-footprint)
- [3DGS with Ray Tracing](#3dgs-with-ray-tracing)
- [3DGS Acceleration](#3dgs-acceleration)
- [3DGS Geometry Reconstruction](#3dgs-geometry-reconstruction)
- [3DGS+Mesh For Reconstruction](#3dgsmesh-for-reconstruction)
- [3DGS Based Dynamic Scene](#3dgs-based-dynamic-scene)
- [3DGS + Depth](#3dgs--depth)
- [3DGS Based Depth Estimation](#3dgs-based-depth-estimation)
- [3DGS Few-shot Reconstruction](#3dgs-few-shot-reconstruction)
- [3DGS Weak Camera Pose](#3dgs-weak-camera-pose)
- [3DGS Object Pose Estimation/Tracking/Detection](#3dgs-object-pose-estimationtrackingdetection)
- [3DGS-NeRF Transfer](#3dgs-nerf-transfer)
- [3DGS Generalization](#3dgs-generalization)
- [Generalizable 3DGS with Feed-forward Networks](#generalizable-3dgs-with-feed-forward-networks)
- [3DGS Indoor Scene Reconstruction](#3dgs-indoor-scene-reconstruction)
- [3DGS Based Wild Scene Reconstruction](#3dgs-based-wild-scene-reconstruction)
- [3DGS Based Large Scene Reconstruction](#3dgs-based-large-scene-reconstruction)
- [3DGS Autonomous Driving](#3dgs-autonomous-driving)
- [3DGS Based Occupancy Prediction](#3dgs-based-occupancy-prediction)
- [3DGS Based on Diffusion](#3dgs-based-on-diffusion)
- [3DGS Based AIGC](#3dgs-based-aigc)
- [3DGS Model Compression](#3dgs-model-compression)
- [3DGS Model Compression Surveys](#3dgs-model-compression-surveys)
- [3DGS Model Compression Progresses](#3dgs-model-compression-progresses)
- [3DGS Streaming](#3dgs-streaming)
- [3DGS Based Relighting](#3dgs-based-relighting)
- [3DGS Robotics](#3dgs-robotics)
- [3DGS Robotics Surveys](#3dgs-robotics-surveys)
- [3DGS Robotics Progresses](#3dgs-robotics-progresses)
- [3DGS Avatar Generation](#3dgs-avatar-generation)
- [3DGS Avatar Generation Survey](#3dgs-avatar-generation-survey)
- [3DGS Avatar Generation Progresses](#3dgs-avatar-generation-progresses)
- [3DGS Clothes/Garment](#3dgs-clothesgarment)
- [3DGS Scene Editing and Animation](#3dgs-scene-editing-and-animation)
- [3D Scene Editing Surveys](#3d-scene-editing-surveys)
- [3D Scene Editing Progresses](#3d-scene-editing-progresses)
- [3DGS Stylization](#3dgs-stylization)
- [3DGS Based Video Editing](#3dgs-based-video-editing)
- [3DGS for Computer Graphics](#3dgs-for-computer-graphics)
- [3DGS Based Scene Understanding](#3dgs-based-scene-understanding)
- [3DGS based Segmentation](#3dgs-based-segmentation)
- [3DGS + Specular](#3dgs--specular)
- [3DGS Based SLAM](#3dgs-based-slam)
- [3DGS SLAM Surveys and Benchmarks](#3dgs-slam-surveys-and-benchmarks)
- [3DGS SLAM Progresses](#3dgs-slam-progresses)
- [3DGS Based 3D Point Tracking](#3dgs-based-3d-point-tracking)
- [3DGS Based Inverse Rendering](#3dgs-based-inverse-rendering)
- [3DGS Imaging Tasks](#3dgs-imaging-tasks)
- [3DGS for Reflective and Transparent Objects](#3dgs-for-reflective-and-transparent-objects)
- [3DGS Superresolution](#3dgs-superresolution)
- [3DGS with/for Point Cloud](#3dgs-withfor-point-cloud)
- [3DGS for CV Tasks](#3dgs-for-cv-tasks)
- [3DGS with Hardware](#3dgs-with-hardware)
- [3DGS Applications](#3dgs-applications)
- [3DGS Application in XR/AR](#3dgs-application-in-xrar)
- [3DGS Application in Animal Reconstruction](#3dgs-application-in-animal-reconstruction)
- [3DGS Application in Medical Imaging](#3dgs-application-in-medical-imaging)
- [3DGS Application in Underwater Scenario](#3dgs-application-in-underwater-scenario)
- [3DGS Application in Agriculture/Forestry Scenario](#3dgs-application-in-agricultureforestry-scenario)
- [3DGS Application in other Areas](#3dgs-application-in-other-areas)
- [3DGS Artifact Detection](#3dgs-artifact-detection)
- [3DGS Copyright/Safety](#3dgs-copyrightsafety)
- [3DGS Applications in UAV/MAV](#3dgs-applications-in-uavmav)
- [3DGS Applications in Satellite Images](#3dgs-applications-in-satellite-images)
- [3DGS Network Applications](#3dgs-network-applications)
- [3DGS for Acoustic](#3dgs-for-acoustic)
- [3DGS with Panorama](#3dgs-with-panorama)
- [3DGS with Thermal](#3dgs-with-thermal)
- [3DGS with Fisheye Camera](#3dgs-with-fisheye-camera)
- [3DGS with Compressive Sensing](#3dgs-with-compressive-sensing)
- [Other NVS Methods](#other-nvs-methods)
- [Other Upstream work(Occasionally Came Across)](#other-upstream-workoccasionally-came-across)
- [Other Surveys](#other-surveys)
- [Contributors](#contributors)
- [License](#license)## 3DGS Original Paper
:fire:**3D Gaussian Splatting for Real-Time Radiance Field Rendering**
*Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, George Drettakis*
ACM ToG 2023, 8 August, 2023Abstract
The emergence of 3D Gaussian Splatting (3DGS) has greatly accelerated the rendering speed of novel view synthesis. Unlike neural implicit representations like Neural Radiance Fields (NeRF) that represent a 3D scene with position and viewpoint-conditioned neural networks, 3D Gaussian Splatting utilizes a set of Gaussian ellipsoids to model the scene so that efficient rendering can be accomplished by rasterizing Gaussian ellipsoids into images. Apart from the fast rendering speed, the explicit representation of 3D Gaussian Splatting facilitates editing tasks like dynamic reconstruction, geometry editing, and physical simulation. Considering the rapid change and growing number of works in this field, we present a literature review of recent 3D Gaussian Splatting methods, which can be roughly classified into 3D reconstruction, 3D editing, and other downstream applications by functionality. Traditional point-based rendering methods and the rendering formulation of 3D Gaussian Splatting are also illustrated for a better understanding of this technique. This survey aims to help beginners get into this field quickly and provide experienced researchers with a comprehensive overview, which can stimulate the future development of the 3D Gaussian Splatting representation.[[arXiv](https://arxiv.org/abs/2308.04079)] [[Project](https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/)] [[Github](https://github.com/graphdeco-inria/gaussian-splatting)]
## 3DGS Surveys
**A Survey on 3D Gaussian Splatting**
*Guikun Chen, Wenguan Wang*
arXiv preprint, 8 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.03890)]**3D Gaussian as a New Vision Era: A Survey**
*Ben Fei, Jingyi Xu, Rui Zhang, Qingyuan Zhou, Weidong Yang, Ying He*
arXiv preprint, 11 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.07181)]:fire:**Recent Advances in 3D Gaussian Splatting**
*Tong Wu, Yu-Jie Yuan, Ling-Xiao Zhang, Jie Yang, Yan-Pei Cao, Ling-Qi Yan, Lin Gao*
arXiv preprint, 17 Mar 2024Abstract
The emergence of 3D Gaussian Splatting (3DGS) has greatly accelerated the rendering speed of novel view synthesis. Unlike neural implicit representations like Neural Radiance Fields (NeRF) that represent a 3D scene with position and viewpoint-conditioned neural networks, 3D Gaussian Splatting utilizes a set of Gaussian ellipsoids to model the scene so that efficient rendering can be accomplished by rasterizing Gaussian ellipsoids into images. Apart from the fast rendering speed, the explicit representation of 3D Gaussian Splatting facilitates editing tasks like dynamic reconstruction, geometry editing, and physical simulation. Considering the rapid change and growing number of works in this field, we present a literature review of recent 3D Gaussian Splatting methods, which can be roughly classified into 3D reconstruction, 3D editing, and other downstream applications by functionality. Traditional point-based rendering methods and the rendering formulation of 3D Gaussian Splatting are also illustrated for a better understanding of this technique. This survey aims to help beginners get into this field quickly and provide experienced researchers with a comprehensive overview, which can stimulate the future development of the 3D Gaussian Splatting representation.[[arXiv](https://arxiv.org/abs/2403.11134)]
**Gaussian Splatting: 3D Reconstruction and Novel View Synthesis, a Review**
*Anurag Dalal, Daniel Hagen, Kjell G. Robbersmyr, Kristian Muri Knausgård*
arXiv preprint, 6 May 2024
[[arXiv](https://arxiv.org/abs/2405.03417)]**Survey on Fundamental Deep Learning 3D Reconstruction Techniques**
*Yonge Bai, LikHang Wong, TszYin Twan*
arXiv preprint, 11 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.08137)]**3D Gaussian Splatting: Survey, Technologies, Challenges, and Opportunities**
*Yanqi Bao, Tianyu Ding, Jing Huo, Yaoli Liu, Yuxin Li, Wenbin Li, Yang Gao, Jiebo Luo*
arXiv preprint, 24 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.17418)]**3D Representation Methods: A Survey**
*Zhengren Wang*
arXiv preprint, 9 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.06475)]## 3DGS Frameworks
:fire:**GauStudio: A Modular Framework for 3D Gaussian Splatting and Beyond**
*Chongjie Ye, Yinyu Nie, Jiahao Chang, Yuantao Chen, Yihao Zhi, Xiaoguang Han*
arXiv preprint, 28 Mar 2024Abstract
We present GauStudio, a novel modular framework for modeling 3D Gaussian Splatting (3DGS) to provide standardized, plug-and-play components for users to easily customize and implement a 3DGS pipeline. Supported by our framework, we propose a hybrid Gaussian representation with foreground and skyball background models. Experiments demonstrate this representation reduces artifacts in unbounded outdoor scenes and improves novel view synthesis. Finally, we propose Gaussian Splatting Surface Reconstruction (GauS), a novel render-then-fuse approach for high-fidelity mesh reconstruction from 3DGS inputs without fine-tuning. Overall, our GauStudio framework, hybrid representation, and GauS approach enhance 3DGS modeling and rendering capabilities, enabling higher-quality novel view synthesis and surface reconstruction.[[arXiv](https://arxiv.org/abs/2403.19632)] [[Code](https://github.com/GAP-LAB-CUHK-SZ/gaustudio)]
**gsplat: An Open-Source Library for Gaussian Splatting**
*Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi, Zhuoyang Pan, Otto Seiskari, Jianbo Ye, Jeffrey Hu, Matthew Tancik, Angjoo Kanazawa*
arXiv preprint, 10 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.06765)]**SuperSplat - 3D Gaussian Splat Editor**
PlayCanvas
[[Code](https://github.com/playcanvas/supersplat)]## 3DGS Profiling
**NerfBaselines: Consistent and Reproducible Evaluation of Novel View Synthesis Methods**
*Jonas Kulhanek, Torsten Sattler*
arXiv preprint, 25 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.17345)] [[Project](https://jkulhanek.com/nerfbaselines/)]## 3DGS Distributed Training
**RetinaGS: Scalable Training for Dense Scene Rendering with Billion-Scale 3D Gaussians**
*Bingling Li, Shengyi Chen, Luchao Wang, Kaimin He, Sijie Yan, Yuanjun Xiong*
arXiv preprint, 17 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.11836)]**On Scaling Up 3D Gaussian Splatting Training**
*Hexu Zhao, Haoyang Weng, Daohan Lu, Ang Li, Jinyang Li, Aurojit Panda, Saining Xie*
arXiv preprint, 26 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.18533)] [[Project](https://daohanlu.github.io/scaling-up-3dgs)] [[Code](https://github.com/nyu-systems/Grendel-GS)]## 3DGS Quality Enhancement
:fire:**Mip-Splatting: Alias-free 3D Gaussian Splatting**
*Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, Andreas Geiger*
arXiv preprint, 27 Nov 2023Abstract
Recently, 3D Gaussian Splatting has demonstrated impressive novel view synthesis results, reaching high fidelity and efficiency. However, strong artifacts can be observed when changing the sampling rate, \eg, by changing focal length or camera distance. We find that the source for this phenomenon can be attributed to the lack of 3D frequency constraints and the usage of a 2D dilation filter. To address this problem, we introduce a 3D smoothing filter which constrains the size of the 3D Gaussian primitives based on the maximal sampling frequency induced by the input views, eliminating high-frequency artifacts when zooming in. Moreover, replacing 2D dilation with a 2D Mip filter, which simulates a 2D box filter, effectively mitigates aliasing and dilation issues. Our evaluation, including scenarios such a training on single-scale images and testing on multiple scales, validates the effectiveness of our approach.[[arXiv](https://arxiv.org/abs/2311.16493)] [[Project](https://niujinshuchong.github.io/mip-splatting/)]
**Multi-Scale 3D Gaussian Splatting for Anti-Aliased Rendering**
*Zhiwen Yan, Weng Fei Low, Yu Chen, Gim Hee Lee*
arXiv preprint, 28 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.17089)] [[Project](https://jokeryan.github.io/projects/ms-gs/)] [[Code](https://github.com/JokerYan/MS-GS/tree/main)] [[Video](https://youtu.be/q77p5nKnpJw)]:fire:**Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering**
*Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, Bo Dai*
arXiv preprint, 30 Nov 2023Abstract
Neural rendering methods have significantly advanced photo-realistic 3D scene rendering in various academic and industrial applications. The recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed combining the benefits of both primitive-based representations and volumetric representations. However, it often leads to heavily redundant Gaussians that try to fit every training view, neglecting the underlying scene geometry. Consequently, the resulting model becomes less robust to significant view changes, texture-less area and lighting effects. We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians, and predicts their attributes on-the-fly based on viewing direction and distance within the view frustum. Anchor growing and pruning strategies are developed based on the importance of neural Gaussians to reliably improve the scene coverage. We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering. We also demonstrates an enhanced capability to accommodate scenes with varying levels-of-detail and view-dependent observations, without sacrificing the rendering speed.[[arXiv](https://arxiv.org/abs/2312.00109)] [[Project](https://city-super.github.io/scaffold-gs/)]
**Gaussian Splitting Algorithm with Color and Opacity Depended on Viewing Direction**
*Dawid Malarz, Weronika Smolak, Jacek Tabor, Sławomir Tadeja, Przemysław Spurek*
arXiv preprint, 21 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.13729)]:fire:**TRIPS: Trilinear Point Splatting for Real-Time Radiance Field Rendering**
*Linus Franke, Darius Rückert, Laura Fink, Marc Stamminger*
Eurographics 2024, 11 Jan 2024Abstract
Point-based radiance field rendering has demonstrated impressive results for novel view synthesis, offering a compelling blend of rendering quality and computational efficiency. However, also latest approaches in this domain are not without their shortcomings. 3D Gaussian Splatting [Kerbl and Kopanas et al. 2023] struggles when tasked with rendering highly detailed scenes, due to blurring and cloudy artifacts. On the other hand, ADOP [Rückert et al. 2022] can accommodate crisper images, but the neural reconstruction network decreases performance, it grapples with temporal instability and it is unable to effectively address large gaps in the point cloud.
In this paper, we present TRIPS (Trilinear Point Splatting), an approach that combines ideas from both Gaussian Splatting and ADOP. The fundamental concept behind our novel technique involves rasterizing points into a screen-space image pyramid, with the selection of the pyramid layer determined by the projected point size. This approach allows rendering arbitrarily large points using a single trilinear write. A lightweight neural network is then used to reconstruct a hole-free image including detail beyond splat resolution. Importantly, our render pipeline is entirely differentiable, allowing for automatic optimization of both point sizes and positions.
Our evaluation demonstrate that TRIPS surpasses existing state-of-the-art methods in terms of rendering quality while maintaining a real-time frame rate of 60 frames per second on readily available hardware. This performance extends to challenging scenarios, such as scenes featuring intricate geometry, expansive landscapes, and auto-exposed footage.
The project page is located at: this https URL[[arXiv](https://arxiv.org/abs/2401.06003)] [[Project](https://lfranke.github.io/trips/)] [[Code](https://github.com/lfranke/trips)] [[Video](https://www.youtube.com/watch?v=Nw4A1tIcErQ&feature=youtu.be)]
**On the Error Analysis of 3D Gaussian Splatting and an Optimal Projection Strategy**
*Letian Huang, Jiayang Bai, Jie Guo, Yanwen Guo*
ECCV 2024, 1 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.00752)] [[Project](https://letianhuang.github.io/op43dgs/)] [[Code](https://github.com/LetianHuang/op43dgs)]**FreGS: 3D Gaussian Splatting with Progressive Frequency Regularization**
*Jiahui Zhang, Fangneng Zhan, Muyu Xu, Shijian Lu, Eric Xing*
CVPR 2024, 11 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.06908)] [[Project](https://rogeraigc.github.io/FreGS-Page/)]:fire:**Analytic-Splatting: Anti-Aliased 3D Gaussian Splatting via Analytic Integration**
*Zhihao Liang, Qi Zhang, Wenbo Hu, Ying Feng, Lei Zhu, Kui Jia*
ECCV 2024, 16 Mar 2024Abstract
The 3D Gaussian Splatting (3DGS) gained its popularity recently by combining the advantages of both primitive-based and volumetric 3D representations, resulting in improved quality and efficiency for 3D scene rendering. However, 3DGS is not alias-free, and its rendering at varying resolutions could produce severe blurring or jaggies. This is because 3DGS treats each pixel as an isolated, single point rather than as an area, causing insensitivity to changes in the footprints of pixels. Consequently, this discrete sampling scheme inevitably results in aliasing, owing to the restricted sampling bandwidth. In this paper, we derive an analytical solution to address this issue. More specifically, we use a conditioned logistic function as the analytic approximation of the cumulative distribution function (CDF) in a one-dimensional Gaussian signal and calculate the Gaussian integral by subtracting the CDFs. We then introduce this approximation in the two-dimensional pixel shading, and present Analytic-Splatting, which analytically approximates the Gaussian integral within the 2D-pixel window area to better capture the intensity response of each pixel. Moreover, we use the approximated response of the pixel window integral area to participate in the transmittance calculation of volume rendering, making Analytic-Splatting sensitive to the changes in pixel footprint at different resolutions. Experiments on various datasets validate that our approach has better anti-aliasing capability that gives more details and better fidelity.[[arXiv](https://arxiv.org/abs/2403.11056)] [[Project](https://lzhnb.github.io/project-pages/analytic-splatting/)] [[Code](https://github.com/lzhnb/Analytic-Splatting)]
:fire:**Mini-Splatting: Representing Scenes with a Constrained Number of Gaussians**
*Guangchi Fang, Bing Wang*
ECCV 2024, 21 Mar 2024Abstract
In this study, we explore the challenge of efficiently representing scenes with a constrained number of Gaussians. Our analysis shifts from traditional graphics and 2D computer vision to the perspective of point clouds, highlighting the inefficient spatial distribution of Gaussian representation as a key limitation in model performance. To address this, we introduce strategies for densification including blur split and depth reinitialization, and simplification through intersection preserving and sampling. These techniques reorganize the spatial positions of the Gaussians, resulting in significant improvements across various datasets and benchmarks in terms of rendering quality, resource consumption, and storage compression. Our Mini-Splatting integrates seamlessly with the original rasterization pipeline, providing a strong baseline for future research in Gaussian-Splatting-based works. \href{this https URL}{Code is available}.[[arXiv](https://arxiv.org/abs/2403.14166)] [[Code](https://github.com/fatPeter/mini-splatting)]
:fire:**Pixel-GS: Density Control with Pixel-aware Gradient for 3D Gaussian Splatting**
*Zheng Zhang, Wenbo Hu, Yixing Lao, Tong He, Hengshuang Zhao*
ECCV 2024, 22 Mar 2024Abstract
3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis results while advancing real-time rendering performance. However, it relies heavily on the quality of the initial point cloud, resulting in blurring and needle-like artifacts in areas with insufficient initializing points. This is mainly attributed to the point cloud growth condition in 3DGS that only considers the average gradient magnitude of points from observable views, thereby failing to grow for large Gaussians that are observable for many viewpoints while many of them are only covered in the boundaries. To this end, we propose a novel method, named Pixel-GS, to take into account the number of pixels covered by the Gaussian in each view during the computation of the growth condition. We regard the covered pixel numbers as the weights to dynamically average the gradients from different views, such that the growth of large Gaussians can be prompted. As a result, points within the areas with insufficient initializing points can be grown more effectively, leading to a more accurate and detailed reconstruction. In addition, we propose a simple yet effective strategy to scale the gradient field according to the distance to the camera, to suppress the growth of floaters near the camera. Extensive experiments both qualitatively and quantitatively demonstrate that our method achieves state-of-the-art rendering quality while maintaining real-time rendering speed, on the challenging Mip-NeRF 360 and Tanks & Temples datasets.[[arXiv](https://arxiv.org/abs/2403.15530)] [[Project](https://pixelgs.github.io/)] [[Code](https://github.com/zhengzhang01/Pixel-GS)]
:fire:**SA-GS: Scale-Adaptive Gaussian Splatting for Training-Free Anti-Aliasing**
*Xiaowei Song, Jv Zheng, Shiran Yuan, Huan-ang Gao, Jingwei Zhao, Xiang He, Weihao Gu, Hao Zhao*
arXiv preprint, 28 Mar 2024Abstract
In this paper, we present a Scale-adaptive method for Anti-aliasing Gaussian Splatting (SA-GS). While the state-of-the-art method Mip-Splatting needs modifying the training procedure of Gaussian splatting, our method functions at test-time and is training-free. Specifically, SA-GS can be applied to any pretrained Gaussian splatting field as a plugin to significantly improve the field's anti-alising performance. The core technique is to apply 2D scale-adaptive filters to each Gaussian during test time. As pointed out by Mip-Splatting, observing Gaussians at different frequencies leads to mismatches between the Gaussian scales during training and testing. Mip-Splatting resolves this issue using 3D smoothing and 2D Mip filters, which are unfortunately not aware of testing frequency. In this work, we show that a 2D scale-adaptive filter that is informed of testing frequency can effectively match the Gaussian scale, thus making the Gaussian primitive distribution remain consistent across different testing frequencies. When scale inconsistency is eliminated, sampling rates smaller than the scene frequency result in conventional jaggedness, and we propose to integrate the projected 2D Gaussian within each pixel during testing. This integration is actually a limiting case of super-sampling, which significantly improves anti-aliasing performance over vanilla Gaussian Splatting. Through extensive experiments using various settings and both bounded and unbounded scenes, we show SA-GS performs comparably with or better than Mip-Splatting. Note that super-sampling and integration are only effective when our scale-adaptive filtering is activated. Our codes, data and models are available at this https URL.[[arXiv](https://arxiv.org/abs/2403.19615)] [[Project](https://kevinsong729.github.io/project-pages/SA-GS/)] [[Code](https://github.com/zsy1987/SA-GS/)]
**Robust Gaussian Splatting**
*François Darmon, Lorenzo Porzi, Samuel Rota-Bulò, Peter Kontschieder*
arXiv preprint, 5 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.04211)]**Revising Densification in Gaussian Splatting**
*Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder*
arXiv preprint, 9 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.06109)]**EGGS: Edge Guided Gaussian Splatting for Radiance Fields**
*Yuanhao Gong*
arXiv preprint, 14 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.09105)]:fire:**3D Gaussian Splatting as Markov Chain Monte Carlo**
*Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Jeff Tseng, Hossam Isack, Abhishek Kar, Andrea Tagliasacchi, Kwang Moo Yi*
arXiv preprint, 15 Apr 2024Abstract
While 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which can lead to poor-quality renderings, and reliance on a good initialization. In this work, we rethink the set of 3D Gaussians as a random sample drawn from an underlying probability distribution describing the physical representation of the scene-in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates can be converted as Stochastic Gradient Langevin Dynamics (SGLD) updates by simply introducing noise. We then rewrite the densification and pruning strategies in 3D Gaussian Splatting as simply a deterministic state transition of MCMC samples, removing these heuristics from the framework. To do so, we revise the 'cloning' of Gaussians into a relocalization scheme that approximately preserves sample probability. To encourage efficient use of Gaussians, we introduce a regularizer that promotes the removal of unused Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.[[arXiv](https://arxiv.org/abs/2404.09591)] [[Project](https://ubc-vision.github.io/3dgs-mcmc/)] [[Code](https://github.com/ubc-vision/3dgs-mcmc)]
**AbsGS: Recovering Fine Details for 3D Gaussian Splatting**
*Zongxin Ye, Wenyu Li, Sidun Liu, Peng Qiao, Yong Dou*
arXiv preprint, 16 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.10484)] [[Project](https://ty424.github.io/AbsGS.github.io/)] [[Code](https://github.com/TY424/AbsGS)]**Gaussian Splatting Decoder for 3D-aware Generative Adversarial Networks**
*Florian Barthel, Arian Beckmann, Wieland Morgenstern, Anna Hilsmann, Peter Eisert*
CVPRW 2024, 16 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.10625)]**Does Gaussian Splatting need SFM Initialization?**
*Yalda Foroutan, Daniel Rebain, Kwang Moo Yi, Andrea Tagliasacchi*
arXiv preprint, 18 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.12547)] [[Project](https://theialab.github.io/nerf-3dgs/)]**Bootstrap 3D Reconstructed Scenes from 3D Gaussian Splatting**
*Yifei Gao, Jie Ou, Lei Wang, Jun Cheng*
arXiv preprint, 29 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.18669)]**Feature Splatting for Better Novel View Synthesis with Low Overlap**
*T. Berriel Martins, Javier Civera*
arXiv preprint, 24 May 2024
[[arXiv](https://arxiv.org/abs/2405.15518)] [[Code](https://github.com/tberriel/FeatSplat)]**NegGS: Negative Gaussian Splatting**
*Artur Kasymov, Bartosz Czekaj, Marcin Mazur, Przemysław Spurek*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.18163)]**3D-HGS: 3D Half-Gaussian Splatting**
*Haolin Li, Jinyang Liu, Mario Sznaier, Octavia Camps*
arXiv preprint, 4 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.02720)]**Gaussian Splatting with Localized Points Management**
*Haosen Yang, Chenhao Zhang, Wenqing Wang, Marco Volino, Adrian Hilton, Li Zhang, Xiatian Zhu*
arXiv preprint, 6 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.04251)] [[Code](https://github.com/Surrey-UP-Lab/GS-LPM)]**Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting**
*Junha Hyung, Susung Hong, Sungwon Hwang, Jaeseong Lee, Jaegul Choo, Jin-Hwa Kim*
arXiv preprint, 17 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.11672)] [[Project](https://junhahyung.github.io/erankgs.github.io/)]**Taming 3DGS: High-Quality Radiance Fields with Limited Resources**
*Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente Carrasco, Markus Steinberger, Fernando De La Torre*
arXiv preprint, 21 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.15643)]**SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting**
*Sara Sabour, Lily Goli, George Kopanas, Mark Matthews, Dmitry Lagun, Leonidas Guibas, Alec Jacobson, David J. Fleet, Andrea Tagliasacchi*
arXiv preprint, 28 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.20055)]**Textured-GS: Gaussian Splatting with Spatially Defined Color and Opacity**
*Zhentao Huang, Minglun Gong*
arXiv preprint, 13 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.09733)]**Splatfacto-W: A Nerfstudio Implementation of Gaussian Splatting for Unconstrained Photo Collections**
*Congrong Xu, Justin Kerr, Angjoo Kanazawa*
arXiv preprint, 17 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.12306)] [[Code](https://github.com/KevinXu02/splatfacto-w)]**MVG-Splatting: Multi-View Guided Gaussian Splatting with Adaptive Quantile-Based Geometric Consistency Densification**
*Zhuoxiao Li, Shanliang Yao, Yijie Chu, Angel F. Garcia-Fernandez, Yong Yue, Eng Gee Lim, Xiaohui Zhu*
arXiv preprint, 16 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.11840)] [[Project](https://mvgsplatting.github.io/)]**3iGS: Factorised Tensorial Illumination for 3D Gaussian Splatting**
*Zhe Jun Tang, Tat-Jen Cham*
ECCV 2024, 7 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.03753)]**Mipmap-GS: Let Gaussians Deform with Scale-specific Mipmap for Anti-aliasing Rendering**
*Jiameng Li, Yue Shi, Jiezhang Cao, Bingbing Ni, Wenjun Zhang, Kai Zhang, Luc Van Gool*
arXiv preprint, 12 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.06286)]**FLoD: Integrating Flexible Level of Detail into 3D Gaussian Splatting for Customizable Rendering**
*Yunji Seo, Young Sun Choi, Hyun Seung Son, Youngjung Uh*
arXiv preprint, 23 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.12894)] [[Project](https://3dgs-flod.github.io/flod.github.io/)] [[Code](https://github.com/3DGS-FLoD/flod)]**Robust 3D Gaussian Splatting for Novel View Synthesis in Presence of Distractors**
*Paul Ungermann, Armin Ettenhofer, Matthias Nießner, Barbara Roessle*
GCPR 2024, 21 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.11697)] [[Project](https://paulungermann.github.io/Robust3DGaussians/)] [[Video](https://www.youtube.com/watch?v=P9unyR7yK3E)] [[Code](https://github.com/paulungermann/Robust3DGaussians)]**Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation**
*Minye Wu, Tinne Tuytelaars*
arXiv preprint, 19 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.10041)]**Correspondence-Guided SfM-Free 3D Gaussian Splatting for NVS**
*Wei Sun, Xiaosong Zhang, Fang Wan, Yanzhao Zhou, Yuan Li, Qixiang Ye, Jianbin Jiao*
arXiv preprint, 16 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.08723)]**Sources of Uncertainty in 3D Scene Reconstruction**
*Marcus Klasson, Riccardo Mereu, Juho Kannala, Arno Solin*
ECCV 2024, 10 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.06407)] [[Project](https://aaltoml.github.io/uncertainty-nerf-gs/)] [[Code](https://github.com/AaltoML/uncertainty-nerf-gs)]**Spectral-GS: Taming 3D Gaussian Splatting with Spectral Entropy**
*Letian Huang, Jie Guo, Jialin Dan, Ruoyu Fu, Shujie Wang, Yuanqi Li, Yanwen Guo*
arXiv preprint, 19 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12771)]**GStex: Per-Primitive Texturing of 2D Gaussian Splatting for Decoupled Appearance and Geometry Modeling**
*Victor Rong, Jingxiang Chen, Sherwin Bahmani, Kiriakos N. Kutulakos, David B. Lindell*
arXiv preprint, 19 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12954)] [[Project](https://lessvrong.com/cs/gstex)]**Frequency-based View Selection in Gaussian Splatting Reconstruction**
*Monica M.Q. Li, Pierre-Yves Lajoie, Giovanni Beltrame*
arXiv preprint, 24 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.16470)]**MVGS: Multi-view-regulated Gaussian Splatting for Novel View Synthesis**
*Xiaobiao Du, Yida Wang, Xin Yu*
arXiv preprint, 2 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.02103)] [[Project](https://xiaobiaodu.github.io/mvgs-project/)] [[Code](https://github.com/xiaobiaodu/MVGS)]**6DGS: Enhanced Direction-Aware Gaussian Splatting for Volumetric Rendering**
*Zhongpai Gao, Benjamin Planche, Meng Zheng, Anwesa Choudhuri, Terrence Chen, Ziyan Wu*
arXiv preprint, 7 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.04974)] [[Project](https://gaozhongpai.github.io/6dgs/)]**PH-Dropout: Prctical Epistemic Uncertainty Quantification for View Synthesis**
*Chuanhao Sun, Thanos Triantafyllou, Anthos Makris, Maja Drmač, Kai Xu, Luo Mai, Mahesh K. Marina*
arXiv preprint, 7 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.05468)]**Variational Bayes Gaussian Splatting**
*Toon Van de Maele, Ozan Catal, Alexander Tschantz, Christopher L. Buckley, Tim Verbelen*
arXiv preprint, 4 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.03592)]**VR-Splatting: Foveated Radiance Field Rendering via 3D Gaussian Splatting and Neural Points**
*Linus Franke, Laura Fink, Marc Stamminger*
arXiv preprint, 23 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.17932)] [[Project](https://lfranke.github.io/vr_splatting/)]**ODGS: 3D Scene Reconstruction from Omnidirectional Images with 3D Gaussian Splattings**
*Suyoung Lee, Jaeyoung Chung, Jaeyoo Huh, Kyoung Mu Lee*
arXiv preprint, 28 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.20686)] [[Code](https://github.com/esw0116/ODGS)]**Projecting Gaussian Ellipsoids While Avoiding Affine Projection Approximation**
*Han Qi, Tao Cai, Xiyue Han*
arXiv preprint, 12 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.07579)]**SplatFormer: Point Transformer for Robust 3D Gaussian Splatting**
*Yutong Chen, Marko Mihajlovic, Xiyi Chen, Yiming Wang, Sergey Prokudin, Siyu Tang*
arXiv preprint, 10 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.06390)] [[Project](https://sergeyprokudin.github.io/splatformer/)] [[Code](https://github.com/ChenYutongTHU/SplatFormer)]**BillBoard Splatting (BBSplat): Learnable Textured Primitives for Novel View Synthesis**
*David Svitov, Pietro Morerio, Lourdes Agapito, Alessio Del Bue*
arXiv preprint, 13 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.08508)] [[Project](https://david-svitov.github.io/BBSplat_project_page/)] [[Video](https://youtu.be/uRM7WFo5vVg)] [[Code](https://github.com/david-svitov/BBSplat)]**Mini-Splatting2: Building 360 Scenes within Minutes via Aggressive Gaussian Densification**
*Guangchi Fang, Bing Wang*
19 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.12788)]**Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels**
*Haodong Chen, Runnan Chen, Qiang Qu, Zhaoqing Wang, Tongliang Liu, Xiaoming Chen, Yuk Ying Chung*
19 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.12440)] [[Project](https://hche8927.github.io/3DLS/)]**Textured Gaussians for Enhanced 3D Scene Appearance Modeling**
*Brian Chao, Hung-Yu Tseng, Lorenzo Porzi, Chen Gao, Tuotuo Li, Qinbo Li, Ayush Saraf, Jia-Bin Huang, Johannes Kopf, Gordon Wetzstein, Changil Kim*
27 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.18625)] [[Project](https://textured-gaussians.github.io/)]**3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes**
*Jan Held, Renaud Vandeghen, Abdullah Hamdi, Adrien Deliege, Anthony Cioppa, Silvio Giancola, Andrea Vedaldi, Bernard Ghanem, Marc Van Droogenbroeck*
22 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.14974)] [[Project](https://convexsplatting.github.io/)] [[Video](https://www.youtube.com/watch?v=5N3OFHH7lbU)] [[Code](https://github.com/convexsplatting/convex-splatting)]**Deformable Radial Kernel Splatting**
*Yi-Hua Huang, Ming-Xian Lin, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, Xiaojuan Qi*
16 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.11752)]**Pushing Rendering Boundaries: Hard Gaussian Splatting**
*Qingshan Xu, Jiequan Cui, Xuanyu Yi, Yuxuan Wang, Yuan Zhou, Yew-Soon Ong, Hanwang Zhang*
6 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.04826)]**ResGS: Residual Densification of 3D Gaussian for Efficient Detail Recovery**
*Yanzhe Lyu, Kai Cheng, Xin Kang, Xuejin Chen*
10 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.07494)]**GS-ProCams: Gaussian Splatting-based Projector-Camera Systems**
*Qingyue Deng, Jijiang Li, Haibin Ling, Bingyao Huang*
16 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.11762)]**GeoTexDensifier: Geometry-Texture-Aware Densification for High-Quality Photorealistic 3D Gaussian Splatting**
*Hanqing Jiang, Xiaojun Xiang, Han Sun, Hongjie Li, Liyang Zhou, Xiaoyu Zhang, Guofeng Zhang*
22 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.16809)]**Topology-Aware 3D Gaussian Splatting: Leveraging Persistent Homology for Optimized Structural Integrity**
*Tianqi Shen, Shaohua Liu, Jiaqi Feng, Ziye Ma, Ning An*
21 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.16619)]## 3DGS with Lower Memory Footprint
:fire:**Spectrally Pruned Gaussian Fields with Neural Compensation**
*Runyi Yang, Zhenxin Zhu, Zhou Jiang, Baijun Ye, Xiaoxue Chen, Yifei Zhang, Yuantao Chen, Jian Zhao, Hao Zhao*
arXiv preprint, 1 May 2024Abstract
Recently, 3D Gaussian Splatting, as a novel 3D representation, has garnered attention for its fast rendering speed and high rendering quality. However, this comes with high memory consumption, e.g., a well-trained Gaussian field may utilize three million Gaussian primitives and over 700 MB of memory. We credit this high memory footprint to the lack of consideration for the relationship between primitives. In this paper, we propose a memory-efficient Gaussian field named SUNDAE with spectral pruning and neural compensation. On one hand, we construct a graph on the set of Gaussian primitives to model their relationship and design a spectral down-sampling module to prune out primitives while preserving desired signals. On the other hand, to compensate for the quality loss of pruning Gaussians, we exploit a lightweight neural network head to mix splatted features, which effectively compensates for quality losses while capturing the relationship between primitives in its weights. We demonstrate the performance of SUNDAE with extensive results. For example, SUNDAE can achieve 26.80 PSNR at 145 FPS using 104 MB memory while the vanilla Gaussian splatting algorithm achieves 25.60 PSNR at 160 FPS using 523 MB memory, on the Mip-NeRF360 dataset. Codes are publicly available at this https URL.[[arXiv](https://arxiv.org/abs/2405.00676)] [[Project](https://runyiyang.github.io/projects/SUNDAE/)] [[Code](https://github.com/RunyiYang/SUNDAE)]
**PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting**
*Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, Tom Goldstein*
arXiv preprint, 14 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.10219)]## 3DGS with Ray Tracing
**Don't Splat your Gaussians: Volumetric Ray-Traced Primitives for Modeling and Rendering Scattering and Emissive Media**
*Jorge Condor, Sebastien Speierer, Lukas Bode, Aljaz Bozic, Simon Green, Piotr Didyk, Adrian Jarabo*
arXiv preprint, 24 May 2024
[[arXiv](https://arxiv.org/abs/2405.15425)]**Unified Gaussian Primitives for Scene Representation and Rendering**
*Yang Zhou, Songyin Wu, Ling-Qi Yan*
arXiv preprint, 14 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.09733)]**3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes**
*Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Riccardo de Lutio, Janick Martinez Esturo, Gavriel State, Sanja Fidler, Nicholas Sharp, Zan Gojcic*
arXiv preprint, 9 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.07090)]**RayGauss: Volumetric Gaussian-Based Ray Casting for Photorealistic Novel View Synthesis**
*Hugo Blanc, Jean-Emmanuel Deschaud, Alexis Paljic*
arXiv preprint, 6 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.03356)] [[Project](https://raygauss.github.io/)]:fire:**EVER: Exact Volumetric Ellipsoid Rendering for Real-time View Synthesis**
*Alexander Mai, Peter Hedman, George Kopanas, Dor Verbin, David Futschik, Qiangeng Xu, Falko Kuester, Jon Barron, Yinda Zhang*
arXiv preprint, 2 Oct 2024Abstract
We present Exact Volumetric Ellipsoid Rendering (EVER), a method for real-time differentiable emission-only volume rendering. Unlike recent rasterization based approach by 3D Gaussian Splatting (3DGS), our primitive based representation allows for exact volume rendering, rather than alpha compositing 3D Gaussian billboards. As such, unlike 3DGS our formulation does not suffer from popping artifacts and view dependent density, but still achieves frame rates of ∼30 FPS at 720p on an NVIDIA RTX4090. Since our approach is built upon ray tracing it enables effects such as defocus blur and camera distortion (e.g. such as from fisheye cameras), which are difficult to achieve by rasterization. We show that our method is more accurate with fewer blending issues than 3DGS and follow-up work on view-consistent rendering, especially on the challenging large-scale scenes from the Zip-NeRF dataset where it achieves sharpest results among real-time techniques.[[arXiv](https://arxiv.org/abs/2410.01804)] [[Project](https://half-potato.gitlab.io/posts/ever/)] [[Video](https://www.bilibili.com/video/BV1atxXeREWg/)]
## 3DGS Acceleration
**EAGLES: Efficient Accelerated 3D Gaussians with Lightweight EncodingS**
*Sharath Girish, Kamal Gupta, Abhinav Shrivastava*
arXiv preprint, 7 Dec, 2023
[[arXiv](https://arxiv.org/abs/2312.04564)] [[Project](https://efficientgaussian.github.io/)] [[Code](https://github.com/Sharath-girish/efficientgaussian)]:fire:**StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering**
*Lukas Radl, Michael Steiner, Mathias Parger, Alexander Weinrauch, Bernhard Kerbl, Markus Steinberger*
SIGGRAPH 2024, 1 Feb 2024Abstract
Gaussian Splatting has emerged as a prominent model for constructing 3D representations from images across diverse domains. However, the efficiency of the 3D Gaussian Splatting rendering pipeline relies on several simplifications. Notably, reducing Gaussian to 2D splats with a single view-space depth introduces popping and blending artifacts during view rotation. Addressing this issue requires accurate per-pixel depth computation, yet a full per-pixel sort proves excessively costly compared to a global sort operation. In this paper, we present a novel hierarchical rasterization approach that systematically resorts and culls splats with minimal processing overhead. Our software rasterizer effectively eliminates popping artifacts and view inconsistencies, as demonstrated through both quantitative and qualitative measurements. Simultaneously, our method mitigates the potential for cheating view-dependent effects with popping, ensuring a more authentic representation. Despite the elimination of cheating, our approach achieves comparable quantitative results for test images, while increasing the consistency for novel view synthesis in motion. Due to its design, our hierarchical approach is only 4% slower on average than the original Gaussian Splatting. Notably, enforcing consistency enables a reduction in the number of Gaussians by approximately half with nearly identical quality and view-consistency. Consequently, rendering performance is nearly doubled, making our approach 1.6x faster than the original Gaussian Splatting, with a 50% reduction in memory requirements.[[arXiv](https://arxiv.org/abs/2402.00525)] [[Project](https://r4dl.github.io/StopThePop/)] [[Code](https://github.com/r4dl/StopThePop)] [[Video](https://www.youtube.com/watch?v=EmcXtHYhigk)]
**GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering**
*Abdullah Hamdi, Luke Melas-Kyriazi, Guocheng Qian, Jinjie Mai, Ruoshi Liu, Carl Vondrick, Bernard Ghanem, Andrea Vedaldi*
CVPR 2024, 15 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.10128)] [[Project](https://abdullahamdi.com/ges/)] [[Code](https://github.com/ajhamdi/ges-splatting)] [[Video](https://www.youtube.com/watch?v=edSvNy3roV8&feature=youtu.be)]**OmniGS: Omnidirectional Gaussian Splatting for Fast Radiance Field Reconstruction using Omnidirectional Images**
*Longwei Li, Huajian Huang, Sai-Kit Yeung, Hui Cheng*
arXiv preprint, 4 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.03202)]**Hash3D: Training-free Acceleration for 3D Generation**
*Xingyi Yang, Xinchao Wang*
arXiv preprint, 9 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.06091)] [[Project](https://adamdad.github.io/hash3D/)] [[Code](https://github.com/Adamdad/hash3D)]**I3DGS: Improve 3D Gaussian Splatting from Multiple Dimensions**
*Jinwei Lin*
arXiv preprint, 10 May 2024
[[arXiv](https://arxiv.org/abs/2405.06408)]**RTGS: Enabling Real-TimeGaussianSplatting on Mobile Devices Using Efficiency-Guided Pruning and Foveated Rendering**
*Weikai Lin, Yu Feng, Yuhao Zhu*
arXiv preprint, 29 Jun 2024
[[arXiv](https://arxiv.org/abs/2407.00435)] [[Code](https://github.com/horizon-research/Fov-3DGS)]**3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt**
*Lukas Höllein, Aljaž Božič, Michael Zollhöfer, Matthias Nießner*
arXiv preprint, 19 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12892)] [[Project](https://lukashoel.github.io/3DGS-LM/)] [[Video](https://www.youtube.com/watch?v=tDiGuGMssg8)] [[Code](https://github.com/lukasHoel/3DGS-LM)]**Low Latency Point Cloud Rendering with Learned Splatting**
*Yueyu Hu, Ran Gong, Qi Sun, Yao Wang*
CVPR 2024 Workshop on AIS, 24 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.16504)] [[Code](https://github.com/huzi96/gaussian-pcloud-render)]**Sort-free Gaussian Splatting via Weighted Sum Rendering**
*Qiqi Hou, Randall Rauwendaal, Zifeng Li, Hoang Le, Farzad Farhadzadeh, Fatih Porikli, Alexei Bourd, Amir Said*
arXiv preprint, 24 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.18931)]**Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives**
*Alex Hanson, Allen Tu, Geng Lin, Vasu Singla, Matthias Zwicker, Tom Goldstein*
30 Nov 2024
[[arXiv](https://arxiv.org/abs/2412.00578)]**Sparse Voxels Rasterization: Real-time High-fidelity Radiance Field Rendering**
*Cheng Sun, Jaesung Choe, Charles Loop, Wei-Chiu Ma, Yu-Chiang Frank Wang*
5 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.04459)]**Volumetrically Consistent 3D Gaussian Rasterization**
*Chinmay Talegaonkar, Yash Belhe, Ravi Ramamoorthi, Nicholas Antipa*
4 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.03378)]**Faster and Better 3D Splatting via Group Training**
*Chengbo Wang, Guozheng Ma, Yifei Xue, Yizhen Lao*
10 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.07608)]**Turbo-GS: Accelerating 3D Gaussian Fitting for High-Quality Radiance Fields**
*Tao Lu, Ankit Dhiman, R Srinath, Emre Arslan, Angela Xing, Yuanbo Xiangli, R Venkatesh Babu, Srinath Sridhar*
18 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.13509)]**Balanced 3DGS: Gaussian-wise Parallelism Rendering with Fine-Grained Tiling**
*Hao Gui, Lin Hu, Rui Chen, Mingxiao Huang, Yuxin Yin, Jin Yang, Yong Wu*
23 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.17378)]## 3DGS Geometry Reconstruction
**SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering**
*Antoine Guédon, Vincent Lepetit*
arXiv preprint, 21 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.12775)] [[Project](https://imagine.enpc.fr/~guedona/sugar/)]**NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting Guidance**
*Hanlin Chen, Chen Li, Gim Hee Lee*
arXiv preprint, 1 Dec, 2023
[[arXiv](https://arxiv.org/abs/2312.00846)]**AtomGS: Atomizing Gaussian Splatting for High-Fidelity Radiance Field**
*Rong Liu, Rui Xu, Yue Hu, Meida Chen, Andrew Feng*
BMVC 2024, 20 May 2024
[[arXiv](https://arxiv.org/abs/2405.12369)] [[Project](https://rongliu-leo.github.io/AtomGS/)] [[Code](https://github.com/RongLiu-Leo/AtomGS)] [[Video](https://www.youtube.com/watch?v=1B7oga_1BqE)]:fire:**2D Gaussian Splatting for Geometrically Accurate Radiance Fields**
*Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, Shenghua Gao*
SIGGRAPH 2024, 26 Mar 2024Abstract
3D Gaussian Splatting (3DGS) has recently revolutionized radiance field reconstruction, achieving high quality novel view synthesis and fast rendering speed without baking. However, 3DGS fails to accurately represent surfaces due to the multi-view inconsistent nature of 3D Gaussians. We present 2D Gaussian Splatting (2DGS), a novel approach to model and reconstruct geometrically accurate radiance fields from multi-view images. Our key idea is to collapse the 3D volume into a set of 2D oriented planar Gaussian disks. Unlike 3D Gaussians, 2D Gaussians provide view-consistent geometry while modeling surfaces intrinsically. To accurately recover thin surfaces and achieve stable optimization, we introduce a perspective-correct 2D splatting process utilizing ray-splat intersection and rasterization. Additionally, we incorporate depth distortion and normal consistency terms to further enhance the quality of the reconstructions. We demonstrate that our differentiable renderer allows for noise-free and detailed geometry reconstruction while maintaining competitive appearance quality, fast training speed, and real-time rendering.[[arXiv](https://arxiv.org/abs/2403.17888)] [[Project](https://surfsplatting.github.io/)] [[Code](https://github.com/hbb1/2d-gaussian-splatting?tab=readme-ov-file)] [[Video](https://www.youtube.com/watch?v=oaHCtB6yiKU)]
**GSDF: 3DGS Meets SDF for Improved Rendering and Reconstruction**
*Mulin Yu, Tao Lu, Linning Xu, Lihan Jiang, Yuanbo Xiangli, Bo Dai*
arXiv preprint, 25 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.16964)] [[Project](https://city-super.github.io/GSDF/)] [[Code](https://github.com/city-super/GSDF)]**Modeling uncertainty for Gaussian Splatting**
*Luca Savant, Diego Valsesia, Enrico Magli*
arXiv preprint, 27 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.18476)]**Surface Reconstruction from Gaussian Splatting via Novel Stereo Views**
*Yaniv Wolf, Amit Bracha, Ron Kimmel*
arXiv preprint, 2 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.01810)] [[Project](https://gs2mesh.github.io/)]**Gaussian Opacity Fields: Efficient and Compact Surface Reconstruction in Unbounded Scenes**
*Zehao Yu, Torsten Sattler, Andreas Geiger*
arXiv preprint, 16 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.10772)] [[Project](https://niujinshuchong.github.io/gaussian-opacity-fields/)] [[Code](https://github.com/autonomousvision/gaussian-opacity-fields)]**Dynamic Gaussians Mesh: Consistent Mesh Reconstruction from Monocular Videos**
*Isabella Liu, Hao Su, Xiaolong Wang*
arXiv preprint, 18 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.12379)] [[Project](https://www.liuisabella.com/DG-Mesh/)]**Direct Learning of Mesh and Appearance via 3D Gaussian Splatting**
*Ancheng Lin, Jun Li*
arXiv preprint, 11 May 2024
[[arXiv](https://arxiv.org/abs/2405.06945)]**TetSphere Splatting: Representing High-Quality Geometry with Lagrangian Volumetric Meshes**
*Minghao Guo, Bohan Wang, Kaiming He, Wojciech Matusik*
arXiv preprint, 30 May 2024
[[arXiv](https://arxiv.org/abs/2405.20283)]**Tetrahedron Splatting for 3D Generation**
*Chun Gu, Zeyu Yang, Zijie Pan, Xiatian Zhu, Li Zhang*
arXiv preprint, 3 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.01579)] [[Code](https://github.com/fudan-zvg/tet-splatting)]**RaDe-GS: Rasterizing Depth in Gaussian Splatting**
*Baowen Zhang, Chuan Fang, Rakesh Shrestha, Yixun Liang, Xiaoxiao Long, Ping Tan*
arXiv preprint, 3 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.01467)]**Trim 3D Gaussian Splatting for Accurate Geometry Representation**
*Lue Fan, Yuxue Yang, Minxing Li, Hongsheng Li, Zhaoxiang Zhang*
arXiv preprint, 11 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.07499)] [[Project](https://trimgs.github.io/)] [[Code](https://github.com/YuxueYang1204/TrimGS)]:fire:**PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction**
*Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Weijian Xie, Shangjin Zhai, Nan Wang, Haomin Liu, Hujun Bao, Guofeng Zhang*
arXiv prepreint, 10 Jun 2024Abstract
Recently, 3D Gaussian Splatting (3DGS) has attracted widespread attention due to its high-quality rendering, and ultra-fast training and rendering speed. However, due to the unstructured and irregular nature of Gaussian point clouds, it is difficult to guarantee geometric reconstruction accuracy and multi-view consistency simply by relying on image reconstruction loss. Although many studies on surface reconstruction based on 3DGS have emerged recently, the quality of their meshes is generally unsatisfactory. To address this problem, we propose a fast planar-based Gaussian splatting reconstruction representation (PGSR) to achieve high-fidelity surface reconstruction while ensuring high-quality rendering. Specifically, we first introduce an unbiased depth rendering method, which directly renders the distance from the camera origin to the Gaussian plane and the corresponding normal map based on the Gaussian distribution of the point cloud, and divides the two to obtain the unbiased depth. We then introduce single-view geometric, multi-view photometric, and geometric regularization to preserve global geometric accuracy. We also propose a camera exposure compensation model to cope with scenes with large illumination variations. Experiments on indoor and outdoor scenes show that our method achieves fast training and rendering while maintaining high-fidelity rendering and geometric reconstruction, outperforming 3DGS-based and NeRF-based methods.[[arXiv](https://arxiv.org/abs/2406.06521)] [[Project](https://zju3dv.github.io/pgsr/)] [[Code](https://github.com/zju3dv/PGSR)]
**VCR-GauS: View Consistent Depth-Normal Regularizer for Gaussian Surface Reconstruction**
*Hanlin Chen, Fangyin Wei, Chen Li, Tianxin Huang, Yunsong Wang, Gim Hee Lee*
arXiv preprint, 9 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.05774)]**Projecting Radiance Fields to Mesh Surfaces**
*Adrian Xuan Wei Lim, Lynnette Hui Xian Ng, Nicholas Kyger, Tomo Michigami, Faraz Baghernezhad*
SIGGRAPH Poster 2024, 17 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.11570)]**GS-Octree: Octree-based 3D Gaussian Splatting for Robust Object-level 3D Reconstruction Under Strong Lighting**
*Jiaze Li, Zhengyu Wen, Luo Zhang, Jiangbei Hu, Fei Hou, Zhebin Zhang, Ying He*
arXiv preprint, 26 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.18199)]**2DGH: 2D Gaussian-Hermite Splatting for High-quality Rendering and Better Geometry Reconstruction**
*Ruihan Yu, Tianyu Huang, Jingwang Ling, Feng Xu*
arXiv preprint, 30 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.16982)]**Spurfies: Sparse Surface Reconstruction using Local Geometry Priors**
*Kevin Raj, Christopher Wewer, Raza Yunus, Eddy Ilg, Jan Eric Lenssen*
arXiv preprint, 29 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.16544)] [[Project](https://geometric-rl.mpi-inf.mpg.de/spurfies/)]**Spiking GS: Towards High-Accuracy and Low-Cost Surface Reconstruction via Spiking Neuron-based Gaussian Splatting**
*Weixing Zhang, Zongrui Li, De Ma, Huajin Tang, Xudong Jiang, Qian Zheng, Gang Pan*
arXiv preprint, 9 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.07266)] [[Code](https://github.com/zju-bmi-lab/SpikingGS)]**Normal-GS: 3D Gaussian Splatting with Normal-Involved Rendering**
*Meng Wei, Qianyi Wu, Jianmin Zheng, Hamid Rezatofighi, Jianfei Cai*
NeurIPS 2024, 27 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.20593)]:fire:**GVKF: Gaussian Voxel Kernel Functions for Highly Efficient Surface Reconstruction in Open Scenes**
*Gaochao Song, Chong Cheng, Hao Wang*
NeurIPS 2024, 4 Nov 2024Abstract
In this paper we present a novel method for efficient and effective 3D surface reconstruction in open scenes. Existing Neural Radiance Fields (NeRF) based works typically require extensive training and rendering time due to the adopted implicit representations. In contrast, 3D Gaussian splatting (3DGS) uses an explicit and discrete representation, hence the reconstructed surface is built by the huge number of Gaussian primitives, which leads to excessive memory consumption and rough surface details in sparse Gaussian areas. To address these issues, we propose Gaussian Voxel Kernel Functions (GVKF), which establish a continuous scene representation based on discrete 3DGS through kernel regression. The GVKF integrates fast 3DGS rasterization and highly effective scene implicit representations, achieving high-fidelity open scene surface reconstruction. Experiments on challenging scene datasets demonstrate the efficiency and effectiveness of our proposed GVKF, featuring with high reconstruction quality, real-time rendering speed, significant savings in storage and training memory consumption.[[arXiv](https://arxiv.org/abs/2411.01853)]
**DyGASR: Dynamic Generalized Exponential Splatting with Surface Alignment for Accelerated 3D Mesh Reconstruction**
*Shengchao Zhao, Yundong Li*
arXiv preprint, 14 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.09156)]**Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction**
*Ziyu Zhang, Binbin Huang, Hanqing Jiang, Liyang Zhou, Xiaojun Xiang, Shunhan Shen*
25 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.16392)]**Geometry Field Splatting with Gaussian Surfels**
*Kaiwen Jiang, Venkataram Sivaram, Cheng Peng, Ravi Ramamoorthi*
26 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.17067)]**G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs**
*Kunyi Li, Michael Niemeyer, Zeyu Chen, Nassir Navab, Federico Tombari*
25 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.16898)]**GSurf: 3D Reconstruction via Signed Distance Fields with Direct Gaussian Supervision**
*Xu Baixin, Hu Jiangbei, Li Jiaze, He Ying*
24 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.15723)] [[Code](https://github.com/xubaixinxbx/Gsurf)]**SplatSDF: Boosting Neural Implicit SDF via Gaussian Splatting Fusion**
*Runfa Blark Li, Keito Suzuki, Bang Du, Ki Myung Brian Le, Nikolay Atanasov, Truong Nguyen*
23 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.15468)]**HDGS: Textured 2D Gaussian Splatting for Enhanced Scene Rendering**
*Yunzhou Song, Heguang Lin, Jiahui Lei, Lingjie Liu, Kostas Daniilidis*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01823)] [[Project](https://timsong412.github.io/HDGS-ProjPage/)] [[Code])(https://github.com/TimSong412/HDGS)]**Ref-GS: Directional Factorization for 2D Gaussian Splatting**
*Youjia Zhang, Anpei Chen, Yumin Wan, Zikai Song, Junqing Yu, Yawei Luo, Wei Yang*
1 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.00905)] [[Project](https://ref-gs.github.io/)]**GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction**
*Jiepeng Wang, Yuan Liu, Peng Wang, Cheng Lin, Junhui Hou, Xin Li, Taku Komura, Wenping Wang*
29 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.19454)] [[Project](https://jiepengwang.github.io/GausSurf/)] [[Code](https://github.com/jiepengwang/GausSurf)]
## 3DGS+Mesh For Reconstruction**Integrating Meshes and 3D Gaussians for Indoor Scene Reconstruction with SAM Mask Guidance**
*Jiyeop Kim, Jongwoo Lim*
arXiv preprint, 23 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.16173)]**Enhancement of 3D Gaussian Splatting using Raw Mesh for Photorealistic Recreation of Architectures**
*Ruizhe Wang, Chunliang Hua, Tomakayev Shingys, Mengyuan Niu, Qingxin Yang, Lizhong Gao, Yi Zheng, Junyan Yang, Qiao Wang*
arXiv preprint, 22 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.15435)]## 3DGS Based Dynamic Scene
**Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis**
*Jonathon Luiten, Georgios Kopanas, Bastian Leibe, Deva Ramanan*
arXiv preprint, 18 Aug 2023
[[arXiv](https://arxiv.org/abs/2308.09713)] [[Project](https://dynamic3dgaussians.github.io/)] [[Github](https://github.com/JonathonLuiten/Dynamic3DGaussians)]:fire:**Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction**
*Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, Xiaogang Jin*
arXiv preprint, 22 Sep 2023Abstract
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering. Nonetheless, cutting-edge dynamic neural rendering methods rely heavily on these implicit representations, which frequently struggle to capture the intricate details of objects in the scene. Furthermore, implicit methods have difficulty achieving real-time rendering in general dynamic scenes, limiting their use in a variety of tasks. To address the issues, we propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space with a deformation field to model monocular dynamic scenes. We also introduce an annealing smoothing training mechanism with no extra overhead, which can mitigate the impact of inaccurate poses on the smoothness of time interpolation tasks in real-world datasets. Through a differential Gaussian rasterizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed. Experiments show that our method outperforms existing methods significantly in terms of both rendering quality and speed, making it well-suited for tasks such as novel-view synthesis, time interpolation, and real-time rendering.[[arXiv](https://arxiv.org/abs/2309.13101)]
**4D Gaussian Splatting for Real-Time Dynamic Scene Rendering**
*Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, Xinggang Wang*
arXiv preprint, 12 Oct 2023
[[arXiv](https://arxiv.org/abs/2310.08528)] [[Project](https://guanjunwu.github.io/4dgs/)] [[Github](https://github.com/hustvl/4DGaussians)]**Real-time Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian Splatting**
*Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, Li Zhang*
arXiv preprint, 16 Oct 2023
[[arXiv](https://arxiv.org/abs/2310.10642)]**Neural Parametric Gaussians for Monocular Non-Rigid Object Reconstruction**
*Devikalyan Das, Christopher Wewer, Raza Yunus, Eddy Ilg, Jan Eric Lenssen*
arXiv preprint, 2 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.01196)]**Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle**
*Youtian Lin, Zuozhuo Dai, Siyu Zhu, Yao Yao*
arXiv preprint, 6 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.03431)]**CoGS: Controllable Gaussian Splatting**
*Heng Yu, Joel Julin, Zoltán Á. Milacski, Koichiro Niinuma, László A. Jeni*
CVPR 2024, 9 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.05664)]**GauFRe: Gaussian Deformation Fields for Real-time Dynamic Novel View Synthesis**
*Yiqing Liang, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc, Douglas Lanman, James Tompkin, Lei Xiao*
arXiv preprint, 18 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.11458)] [[Project](https://lynl7130.github.io/gaufre/index.html)]:fire:**SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes**
*Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, Xiaojuan Qi*
CVPR 2024, 4 Dec 2023Abstract
Novel view synthesis for dynamic scenes is still a challenging problem in computer vision and graphics. Recently, Gaussian splatting has emerged as a robust technique to represent static scenes and enable high-quality and real-time novel view synthesis. Building upon this technique, we propose a new representation that explicitly decomposes the motion and appearance of dynamic scenes into sparse control points and dense Gaussians, respectively. Our key idea is to use sparse control points, significantly fewer in number than the Gaussians, to learn compact 6 DoF transformation bases, which can be locally interpolated through learned interpolation weights to yield the motion field of 3D Gaussians. We employ a deformation MLP to predict time-varying 6 DoF transformations for each control point, which reduces learning complexities, enhances learning abilities, and facilitates obtaining temporal and spatial coherent motion patterns. Then, we jointly learn the 3D Gaussians, the canonical space locations of control points, and the deformation MLP to reconstruct the appearance, geometry, and dynamics of 3D scenes. During learning, the location and number of control points are adaptively adjusted to accommodate varying motion complexities in different regions, and an ARAP loss following the principle of as rigid as possible is developed to enforce spatial continuity and local rigidity of learned motions. Finally, thanks to the explicit sparse motion representation and its decomposition from appearance, our method can enable user-controlled motion editing while retaining high-fidelity appearances. Extensive experiments demonstrate that our approach outperforms existing approaches on novel view synthesis with a high rendering speed and enables novel appearance-preserved motion editing applications. Project page: this https URL[[arXiv](https://arxiv.org/abs/2312.14937)] [[Project](https://yihua7.github.io/SC-GS-web/)] [[Code](https://github.com/yihua7/SC-GS)] [[Video](https://www.youtube.com/watch?v=CYQYX_0xi5E&feature=youtu.be)]
**Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis**
*Zhan Li, Zhang Chen, Zhong Li, Yi Xu*
CVPR 2024, 28 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.16812)] [[Project](https://oppo-us-research.github.io/SpacetimeGaussians-website/)] [[Code](https://github.com/oppo-us-research/SpacetimeGaussians)] [[Video](https://www.youtube.com/watch?v=YsPPmf-E6Lg)]**4D Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes**
*Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, Baoquan Chen*
arXiv preprint, 5 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.03307)] [[Code](https://github.com/weify627/4D-Rotor-Gaussians?tab=readme-ov-file)]**Mesh-based Gaussian Splatting for Real-time Large-scale Deformation**
*Lin Gao, Jie Yang, Bo-Tao Zhang, Jia-Mu Sun, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai*
arXiv preprint, 7 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.04796)]**GaussianFlow: Splatting Gaussian Dynamics for 4D Content Creation**
*Quankai Gao, Qiangeng Xu, Zhe Cao, Ben Mildenhall, Wenchao Ma, Le Chen, Danhang Tang, Ulrich Neumann*
arXiv preprint, 19 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.12365)] [[Project](https://zerg-overmind.github.io/GaussianFlow.github.io/)] [[Code](https://github.com/Zerg-Overmind/GaussianFlow)] [[Video](https://www.youtube.com/watch?v=0qRcjTw7-YU&feature=youtu.be)]**Per-Gaussian Embedding-Based Deformation for Deformable 3D Gaussian Splatting**
*Jeongmin Bae, Seoha Kim, Youngsik Yun, Hahyun Lee, Gun Bang, Youngjung Uh*
arXiv preprint, 4 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.03613)] [[Project](https://jeongminb.github.io/e-d3dgs/)] [[Code](https://github.com/JeongminB/E-D3DGS)]**3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis**
*Zhicheng Lu, Xiang Guo, Le Hui, Tianrui Chen, Min Yang, Xiao Tang, Feng Zhu, Yuchao Dai*
CVPR 2024, 9 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.06270)] [[Project](https://npucvr.github.io/GaGS/)]**Gaussian Time Machine: A Real-Time Rendering Methodology for Time-Variant Appearances**
*Licheng Shen, Ho Ngai Chow, Lingyun Wang, Tong Zhang, Mengqiu Wang, Yuxing Han*
arXiv preprint, 22 May 2024
[[arXiv](https://arxiv.org/abs/2405.13694)]**MoSca: Dynamic Gaussian Fusion from Casual Videos via 4D Motion Scaffolds**
*Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas, Kostas Daniilidis*
arXiv preprint, 27 May 2024
[[arXiv](https://arxiv.org/abs/2405.17421)] [[Project](https://www.cis.upenn.edu/~leijh/projects/mosca/)] [[Video](https://www.youtube.com/watch?v=to869D5V7gQ)]**GSDeformer: Direct Cage-based Deformation for 3D Gaussian Splatting**
*Jiajun Huang, Hongchuan Yu*
arXiv preprint, 24 May 2024
[[arXiv](https://arxiv.org/abs/2405.15491)] [[Project](https://jhuangbu.github.io/gsdeformer/)] [[Video](https://jhuangbu.github.io/gsdeformer/static/videos/gsdeformer-final-video.mp4)]**GFlow: Recovering 4D World from Monocular Video**
*Shizun Wang, Xingyi Yang, Qiuhong Shen, Zhenxiang Jiang, Xinchao Wang*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.18426)] [[Project](https://littlepure2333.github.io/GFlow/)]**A Refined 3D Gaussian Representation for High-Quality Dynamic Scene Reconstruction**
*Bin Zhang, Bi Zeng, Zexin Peng*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.17891)]**Object-centric Reconstruction and Tracking of Dynamic Unknown Objects using 3D Gaussian Splatting**
*Kuldeep R Barad, Antoine Richard, Jan Dentler, Miguel Olivares-Mendez, Carol Martinez*
IEEE Space Robotics 2024, 30 May 2024
[[arXiv](https://arxiv.org/abs/2405.20104)]**GaussianPrediction: Dynamic 3D Gaussian Prediction for Motion Extrapolation and Free View Synthesis**
*Boming Zhao, Yuan Li, Ziyu Sun, Lin Zeng, Yujun Shen, Rui Ma, Yinda Zhang, Hujun Bao, Zhaopeng Cui*
SIGGRAPH 2024, 30 May 2024
[[arXiv](https://arxiv.org/abs/2405.19745)] [[Project](https://zju3dv.github.io/gaussian-prediction/)]**Reconstructing and Simulating Dynamic 3D Objects with Mesh-adsorbed Gaussian Splatting**
*Shaojie Ma, Yawei Luo, Yi Yang*
arXiv preprint, 3 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.01593)] [[Project](https://wcwac.github.io/MaGS-page/)] [[Code](https://github.com/wcwac/MaGS)]**Self-Calibrating 4D Novel View Synthesis from Monocular Videos Using Gaussian Splatting**
*Fang Li, Hao Zhang, Narendra Ahuja*
arXiv preprint, 3 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.01042)] [[Code](https://github.com/fangli333/SC-4DGS)]:fire:**Superpoint Gaussian Splatting for Real-Time High-Fidelity Dynamic Scene Reconstruction**
*Diwen Wan, Ruijie Lu, Gang Zeng*
ICML 2024, 6 Jun 2024Abstract
Rendering novel view images in dynamic scenes is a crucial yet challenging task. Current methods mainly utilize NeRF-based methods to represent the static scene and an additional time-variant MLP to model scene deformations, resulting in relatively low rendering quality as well as slow inference speed. To tackle these challenges, we propose a novel framework named Superpoint Gaussian Splatting (SP-GS). Specifically, our framework first employs explicit 3D Gaussians to reconstruct the scene and then clusters Gaussians with similar properties (e.g., rotation, translation, and location) into superpoints. Empowered by these superpoints, our method manages to extend 3D Gaussian splatting to dynamic scenes with only a slight increase in computational expense. Apart from achieving state-of-the-art visual quality and real-time rendering under high resolutions, the superpoint representation provides a stronger manipulation capability. Extensive experiments demonstrate the practicality and effectiveness of our approach on both synthetic and real-world datasets. Please see our project page at this https URL.[[arXiv](https://arxiv.org/abs/2406.03697)] [[Project](https://dnvtmf.github.io/SP_GS.github.io/)] [[Code](https://github.com/dnvtmf/SP_GS)]
**MoDGS: Dynamic Gaussian Splatting from Causually-captured Monocular Videos**
*Qingming Liu, Yuan Liu, Jiepeng Wang, Xianqiang Lv, Peng Wang, Wenping Wang, Junhui Hou*
arXiv preprint, 1 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.00434)]**DGD: Dynamic 3D Gaussians Distillation**
*Isaac Labe, Noam Issachar, Itai Lang, Sagie Benaim*
arXiv preprint, 29 May 2024
[[arXiv](https://arxiv.org/abs/2405.19321)] [[Project](https://isaaclabe.github.io/DGD-Website/)] [[Code](https://github.com/Isaaclabe/DGD-Dynamic-3D-Gaussians-Distillation)]**Modeling Ambient Scene Dynamics for Free-view Synthesis**
*Meng-Li Shih, Jia-Bin Huang, Changil Kim, Rajvi Shah, Johannes Kopf, Chen Gao*
SIGGRAPH 2024, 13 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.09395)] [[Project](https://ambientgaussian.github.io/)]**Dynamic Gaussian Marbles for Novel View Synthesis of Casual Monocular Videos**
*Colton Stearns, Adam Harley, Mikaela Uy, Florian Dubost, Federico Tombari, Gordon Wetzstein, Leonidas Guibas*
arXiv preprint, 26 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.18717)]**Gaussian Splatting LK**
*Liuyue Xie, Joel Julin, Koichiro Niinuma, Laszlo A. Jeni*
arXiv preprint, 16 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.11309)]**S4D: Streaming 4D Real-World Reconstruction with Gaussians and 3D Control Points**
*Bing He, Yunuo Chen, Guo Lu, Li Song, Wenjun Zhang*
arXiv preprint, 23 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.13036)]**SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction**
*Marko Mihajlovic, Sergey Prokudin, Siyu Tang, Robert Maier, Federica Bogo, Tony Tung, Edmond Boyer*
ECCV 2024, 17 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.11211)]**MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting**
*Ruijie Zhu, Yanzhe Liang, Hanzhi Chang, Jiacheng Deng, Jiahao Lu, Wenfei Yang, Tianzhu Zhang, Yongdong Zhang*
NeurIPS 2024, 10 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.07707)] [[Project](https://ruijiezhu94.github.io/MotionGS_page/)]**DN-4DGS: Denoised Deformable Network with Temporal-Spatial Aggregation for Dynamic Scene Rendering**
*Jiahao Lu, Jiacheng Deng, Ruijie Zhu, Yanzhe Liang, Wenfei Yang, Tianzhu Zhang, Xu Zhou*
NeurIPS 2024, 17 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.13607)]**MEGA: Memory-Efficient 4D Gaussian Splatting for Dynamic Scenes**
*Xinjie Zhang, Zhening Liu, Yifan Zhang, Xingtong Ge, Dailan He, Tongda Xu, Yan Wang, Zehong Lin, Shuicheng Yan, Jun Zhang*
arXiv preprint, 17 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.13613)]**Fully Explicit Dynamic Gaussian Splatting**
*Junoh Lee, Chang-Yeon Won, Hyunjun Jung, Inhwan Bae, Hae-Gon Jeon*
NeurIPS 2024, 21 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.15629)]**FreeGaussian: Guidance-free Controllable 3D Gaussian Splats with Flow Derivatives**
*Qizhi Chen, Delin Qu, Yiwen Tang, Haoming Song, Yiting Zhang, Dong Wang, Bin Zhao, Xuelong Li*
arXiv preprint, 29 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.22070)] [[Project](https://freegaussian.github.io/)] [[Code](https://github.com/freegaussian/freegaussian.github.io)]**Grid4D: 4D Decomposed Hash Encoding for High-fidelity Dynamic Gaussian Splatting**
*Jiawei Xu, Zexin Fan, Jian Yang, Jin Xie*
NeurIPS 2024, 28 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.20815)]**HiCoM: Hierarchical Coherent Motion for Streamable Dynamic Scene with 3D Gaussian Splatting**
*Qiankun Gao, Jiarui Meng, Chengxiang Wen, Jie Chen, Jian Zhang*
NeurIPS 2024, 12 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.07541)] [[Code](https://github.com/gqk/HiCoM)]**Adaptive and Temporally Consistent Gaussian Surfels for Multi-view Dynamic Reconstruction**
*Decai Chen, Brianne Oberson, Ingo Feldmann, Oliver Schreer, Anna Hilsmann, Peter Eisert*
arXiv preprint, 10 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.06602)] [[Project](https://fraunhoferhhi.github.io/AT-GS/)]**4D Gaussian Splatting in the Wild with Uncertainty-Aware Regularization**
*Mijeong Kim, Jongwoo Lim, Bohyung Han*
NeurIPS 2024, 13 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.08879)]**Sketch-guided Cage-based 3D Gaussian Splatting Deformation**
*Tianhao Xie, Noam Aigerman, Eugene Belilovsky, Tiberiu Popa*
arXiv preprint, 19 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.12168)]**TimeFormer: Capturing Temporal Relationships of Deformable 3D Gaussians for Robust Reconstruction**
*DaDong Jiang, Zhihui Ke, Xiaobo Zhou, Zhi Hou, Xianghui Yang, Wenbo Hu, Tie Qiu, Chunchao Guo*
18 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.11941)] [[Project](https://patrickddj.github.io/TimeFormer/)]**4D Scaffold Gaussian Splatting for Memory Efficient Dynamic Scene Reconstruction**
*Woong Oh Cho, In Cho, Seoha Kim, Jeongmin Bae, Youngjung Uh, Seon Joo Kim*
26 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.17044)]**Event-boosted Deformable 3D Gaussians for Fast Dynamic Scene Reconstruction**
*Wenhao Xu, Wenming Weng, Yueyi Zhang, Ruikang Xu, Zhiwei Xiong*
25 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.16180)]**RelayGS: Reconstructing Dynamic Scenes with Large-Scale and Complex Motions via Relay Gaussians**
*Qiankun Gao, Yanmin Wu, Chengxiang Wen, Jiarui Meng, Luyang Tang, Jie Chen, Ronggang Wang, Jian Zhang*
3 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.02493)] [[Code](https://github.com/gqk/RelayGS)]**Monocular Dynamic Gaussian Splatting is Fast and Brittle but Smooth Motion Helps**
*Yiqing Liang, Mikhail Okunev, Mikaela Angelina Uy, Runfeng Li, Leonidas Guibas, James Tompkin, Adam W. Harley*
5 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.04457)] [[Project](https://lynl7130.github.io/MonoDyGauBench.github.io/)] [[Code](https://github.com/lynl7130/MonoDyGauBench_code)]**Urban4D: Semantic-Guided 4D Gaussian Splatting for Urban Scene Reconstruction**
*Ziwen Li, Jiaxin Huang, Runnan Chen, Yunlong Che, Yandong Guo, Tongliang Liu, Fakhri Karray, Mingming Gong*
4 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.03473)]**HybridGS: Decoupling Transients and Statics with 2D and 3D Gaussian Splatting**
*Jingyu Lin, Jiaqi Gu, Lubin Fan, Bojian Wu, Yujing Lou, Renjie Chen, Ligang Liu, Jieping *
5 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.03844)] [[Project](https://gujiaqivadin.github.io/hybridgs/)] [[Code](https://github.com/Yeyuqqwx/HybridGS)]**Template-free Articulated Gaussian Splatting for Real-time Reposable Dynamic View Synthesis**
*Diwen Wan, Yuxiang Wang, Ruijie Lu, Gang Zeng*
NeurIPS 2024, 7 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.05570)]**4D Gaussian Splatting with Scale-aware Residual Field and Adaptive Optimization for Real-time Rendering of Temporally Complex Dynamic Scenes**
*Jinbo Yan, Rui Peng, Luyang Tang, Ronggang Wang*
9 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.06299)] [[Project](https://yjb6.github.io/SaRO-GS.github.io/)]**Deblur4DGS: 4D Gaussian Splatting from Blurry Monocular Video**
*Renlong Wu, Zhilu Zhang, Mingyang Chen, Xiaopeng Fan, Zifei Yan, Wangmeng Zuo*
9 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.06424)] [[Code](https://github.com/ZcsrenlongZ/Deblur4DGS)]**SplineGS: Robust Motion-Adaptive Spline for Real-Time Dynamic 3D Gaussians from Monocular Video**
*Jongmin Park, Minh-Quan Viet Bui, Juan Luis Gonzalez Bello, Jaeho Moon, Jihyong Oh, Munchurl Kim*
13 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.09982)]## 3DGS + Depth
:fire:**DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with Global-Local Depth Normalization**
*Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, Lin Gu*
CVPR 2024, 11 Mar 2024Abstract
Radiance fields have demonstrated impressive performance in synthesizing novel views from sparse input views, yet prevailing methods suffer from high training costs and slow inference speed. This paper introduces DNGaussian, a depth-regularized framework based on 3D Gaussian radiance fields, offering real-time and high-quality few-shot novel view synthesis at low costs. Our motivation stems from the highly efficient representation and surprising quality of the recent 3D Gaussian Splatting, despite it will encounter a geometry degradation when input views decrease. In the Gaussian radiance fields, we find this degradation in scene geometry primarily lined to the positioning of Gaussian primitives and can be mitigated by depth constraint. Consequently, we propose a Hard and Soft Depth Regularization to restore accurate scene geometry under coarse monocular depth supervision while maintaining a fine-grained color appearance. To further refine detailed geometry reshaping, we introduce Global-Local Depth Normalization, enhancing the focus on small local depth changes. Extensive experiments on LLFF, DTU, and Blender datasets demonstrate that DNGaussian outperforms state-of-the-art methods, achieving comparable or better results with significantly reduced memory cost, a 25× reduction in training time, and over 3000× faster rendering speed.[[arXiv](https://arxiv.org/abs/2403.06912)] [[Project](https://fictionarry.github.io/DNGaussian/)] [[Code](https://github.com/Fictionarry/DNGaussian)] [[Video](https://www.youtube.com/watch?v=xmaRI9M3g_M)]
:fire:**DN-Splatter: Depth and Normal Priors for Gaussian Splatting and Meshing**
*Matias Turkulainen, Xuqian Ren, Iaroslav Melekhov, Otto Seiskari, Esa Rahtu, Juho Kannala*
arXiv preprint, 26 Mar 2024Abstract
High-fidelity 3D reconstruction of common indoor scenes is crucial for VR and AR applications. 3D Gaussian splatting, a novel differentiable rendering technique, has achieved state-of-the-art novel view synthesis results with high rendering speeds and relatively low training times. However, its performance on scenes commonly seen in indoor datasets is poor due to the lack of geometric constraints during optimization. In this work, we explore the use of readily accessible geometric cues to enhance Gaussian splatting optimization in challenging, ill-posed, and textureless scenes. We extend 3D Gaussian splatting with depth and normal cues to tackle challenging indoor datasets and showcase techniques for efficient mesh extraction. Specifically, we regularize the optimization procedure with depth information, enforce local smoothness of nearby Gaussians, and use off-the-shelf monocular networks to achieve better alignment with the true scene geometry. We propose an adaptive depth loss based on the gradient of color images, improving depth estimation and novel view synthesis results over various baselines. Our simple yet effective regularization technique enables direct mesh extraction from the Gaussian representation, yielding more physically accurate reconstructions of indoor scenes.[[arXiv](https://arxiv.org/abs/2403.17822)]
**HoloGS: Instant Depth-based 3D Gaussian Splatting with Microsoft HoloLens 2**
*Miriam Jäger, Theodor Kapler, Michael Feßenbecker, Felix Birkelbach, Markus Hillemann, Boris Jutzi*
arXiv preprint, 3 May 2024
[[arXiv](https://arxiv.org/abs/2405.02005)]**Self-Evolving Depth-Supervised 3D Gaussian Splatting from Rendered Stereo Pairs**
*Sadra Safadoust, Fabio Tosi, Fatma Güney, Matteo Poggi*
BMVC 2024, 11 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.07456)] [[Project](https://kuis-ai.github.io/StereoGS/)] [[Code](https://github.com/sadrasafa/StereoGS/)]## 3DGS Based Depth Estimation
**Depth Estimation Based on 3D Gaussian Splatting Siamese Defocus**
*Jinchang Zhang, Ningning Xu, Hao Zhang, Guoyu Lu*
arXiv preprint, 18 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12323)]## 3DGS Few-shot Reconstruction
**Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot Images**
*Jaeyoung Chung, Jeongtaek Oh, Kyoung Mu Lee*
arXiv preprint, 22 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.13398)]**FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting**
*Zehao Zhu, Zhiwen Fan, Yifan Jiang, Zhangyang Wang*
arXiv preprint, 1 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.00451)] [[Project](https://zehaozhu.github.io/FSGS/)]**Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with Transformers**
*Zi-Xin Zou, Zhipeng Yu, Yuan-Chen Guo, Yangguang Li, Ding Liang, Yan-Pei Cao, Song-Hai Zhang*
arXiv preprint, 14 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.09147)] [[Project](https://zouzx.github.io/TriplaneGaussian/)] [[Code](https://github.com/VAST-AI-Research/TriplaneGaussian)]**pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction**
*David Charatan, Sizhe Li, Andrea Tagliasacchi, Vincent Sitzmann*
arXiv preprint, 19 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.12337)] [[Project](https://davidcharatan.com/pixelsplat/)] [[Code](https://github.com/dcharatan/pixelsplat)]**AGG: Amortized Generative 3D Gaussians for Single Image to 3D**
*Dejia Xu, Ye Yuan, Morteza Mardani, Sifei Liu, Jiaming Song, Zhangyang Wang, Arash Vahdat*
arXiv preprint, 8 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.04099)] [[Project](https://ir1d.github.io/AGG/)]**GaussianObject: Just Taking Four Images to Get A High-Quality 3D Object with Gaussian Splatting**
*Chen Yang, Sikuang Li, Jiemin Fang, Ruofan Liang, Lingxi Xie, Xiaopeng Zhang, Wei Shen, Qi Tian*
arXiv preprint, 15 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.10259)] [[Project](https://gaussianobject.github.io/)]**FDGaussian: Fast Gaussian Splatting from Single Image via Geometric-aware Diffusion Model**
*Qijun Feng, Zhen Xing, Zuxuan Wu, Yu-Gang Jiang*
arXiv preprint, 15 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.10242)] [[Project](https://qjfeng.net/FDGaussian/)]**Gamba: Marry Gaussian Splatting with Mamba for single view 3D reconstruction**
*Qiuhong Shen, Xuanyu Yi, Zike Wu, Pan Zhou, Hanwang Zhang, Shuicheng Yan, Xinchao Wang*
arXiv preprint, 27 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.18795)] [[Project](https://florinshen.github.io/gamba-project/)]:fire:**InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds**
*Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang, Jian Zhang, Xinghao Ding, Danfei Xu, Boris Ivanovic, Marco Pavone, Georgios Pavlakos, Zhangyang Wang, Yue Wang*
arXiv preprint, 29 Mar 2024Abstract
While novel view synthesis (NVS) from a sparse set of images has advanced significantly in 3D computer vision, it relies on precise initial estimation of camera parameters using Structure-from-Motion (SfM). For instance, the recently developed Gaussian Splatting depends heavily on the accuracy of SfM-derived points and poses. However, SfM processes are time-consuming and often prove unreliable in sparse-view scenarios, where matched features are scarce, leading to accumulated errors and limited generalization capability across datasets. In this study, we introduce a novel and efficient framework to enhance robust NVS from sparse-view images. Our framework, InstantSplat, integrates multi-view stereo(MVS) predictions with point-based representations to construct 3D Gaussians of large-scale scenes from sparse-view data within seconds, addressing the aforementioned performance and efficiency issues by SfM. Specifically, InstantSplat generates densely populated surface points across all training views and determines the initial camera parameters using pixel-alignment. Nonetheless, the MVS points are not globally accurate, and the pixel-wise prediction from all views results in an excessive Gaussian number, yielding a overparameterized scene representation that compromises both training speed and accuracy. To address this issue, we employ a grid-based, confidence-aware Farthest Point Sampling to strategically position point primitives at representative locations in parallel. Next, we enhance pose accuracy and tune scene parameters through a gradient-based joint optimization framework from self-supervision. By employing this simplified framework, InstantSplat achieves a substantial reduction in training time, from hours to mere seconds, and demonstrates robust performance across various numbers of views in diverse datasets.[[arXiv](https://arxiv.org/abs/2403.20309)] [[Project](https://instantsplat.github.io/)] [[Video](https://youtu.be/_9aQHLHHoEM)]
**CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians**
*Avinash Paliwal, Wei Ye, Jinhui Xiong, Dmytro Kotovenko, Rakesh Ranjan, Vikas Chandra, Nima Khademi Kalantari*
arXiv preprint, 28 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.19495)] [[Project](https://people.engr.tamu.edu/nimak/Papers/CoherentGS/index.html)]**Guess The Unseen: Dynamic 3D Scene Reconstruction from Partial 2D Glimpses**
*Inhee Lee, Byungjun Kim, Hanbyul Joo*
arXiv preprint, 22 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.14410)] [[Project](https://snuvclab.github.io/gtu/)]**GDGS: Gradient Domain Gaussian Splatting for Sparse Representation of Radiance Fields**
*Yuanhao Gong*
arXiv preprint, 8 May 2024
[[arXiv](https://arxiv.org/abs/2405.05446)]**CoR-GS: Sparse-View 3D Gaussian Splatting via Co-Regularization**
*Jiawei Zhang, Jiahe Li, Xiaohan Yu, Lei Huang, Lin Gu, Jin Zheng, Xiao Bai*
arXiv preprint, 20 May 2024
[[arXiv](https://arxiv.org/abs/2405.12110)] [[Project](https://jiaw-z.github.io/CoR-GS/)] [[Video](https://youtu.be/O83v9Wrn3c4)]**Sp2360: Sparse-view 360 Scene Reconstruction using Cascaded 2D Diffusion Priors**
*Soumava Paul, Christopher Wewer, Bernt Schiele, Jan Eric Lenssen*
arXiv preprint, 26 May 2024
[[arXiv](https://arxiv.org/abs/2405.16517)]**A Pixel Is Worth More Than One 3D Gaussians in Single-View 3D Reconstruction**
*Jianghao Shen, Tianfu Wu*
arXiv preprint, 30 May 2024
[[arXiv](https://arxiv.org/abs/2405.20310)]**GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction**
*Yuxuan Mu, Xinxin Zuo, Chuan Guo, Yilin Wang, Juwei Lu, Xiaofeng Wu, Songcen Xu, Peng Dai, Youliang Yan, Li Cheng*
ECCV 2024, 5 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.04237)]**Self-augmented Gaussian Splatting with Structure-aware Masks for Sparse-view 3D Reconstruction**
*Lingbei Meng, Bi'an Du, Wei Hu*
arXiv preprint, 9 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.04831)]:fire:**ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model**
*Fangfu Liu, Wenqiang Sun, Hanyang Wang, Yikai Wang, Haowen Sun, Junliang Ye, Jun Zhang, Yueqi Duan*
arXiv preprint, 29 Aug 2024Abstract
Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.[[arXiv](https://arxiv.org/abs/2408.16767)] [[Project](https://liuff19.github.io/ReconX/)] [[Video](https://www.youtube.com/watch?v=UuL2nP5rJcI)] [[Code](https://github.com/liuff19/ReconX)]
:fire:**ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis**
*Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-Tsin Wong, Ying Shan, Yonghong Tian*
arXiv preprint, 3 Sep 2024Abstract
Despite recent advancements in neural 3D reconstruction, the dependence on dense multi-view captures restricts their broader applicability. In this work, we propose \textbf{ViewCrafter}, a novel method for synthesizing high-fidelity novel views of generic scenes from single or sparse images with the prior of video diffusion model. Our method takes advantage of the powerful generation capabilities of video diffusion model and the coarse 3D clues offered by point-based representation to generate high-quality video frames with precise camera pose control. To further enlarge the generation range of novel views, we tailored an iterative view synthesis strategy together with a camera trajectory planning algorithm to progressively extend the 3D clues and the areas covered by the novel views. With ViewCrafter, we can facilitate various applications, such as immersive experiences with real-time rendering by efficiently optimizing a 3D-GS representation using the reconstructed 3D points and the generated novel views, and scene-level text-to-3D generation for more imaginative content creation. Extensive experiments on diverse datasets demonstrate the strong generalization capability and superior performance of our method in synthesizing high-fidelity and consistent novel views.[[arXiv](https://arxiv.org/abs/2409.02048)] [[Project](https://drexubery.github.io/ViewCrafter/)] [[Video](https://www.youtube.com/watch?v=WGIEmu9eXmU)] [[Code](https://github.com/Drexubery/ViewCrafter)]
**LM-Gaussian: Boost Sparse-view 3D Gaussian Splatting with Large Model Priors**
*Hanyang Yu, Xiaoxiao Long, Ping Tan*
arXiv preprint, 5 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.03456)] [[Project](https://hanyangyu1021.github.io/lm-gaussian.github.io/)] [[Video](https://www.youtube.com/watch?v=ic4luAY_Hvk)] [[Code](https://github.com/hanyangyu1021/LMGaussian)]**Optimizing 3D Gaussian Splatting for Sparse Viewpoint Scene Reconstruction**
*Shen Chen, Jiale Zhou, Lei Li*
arXiv preprint, 5 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.03213)]**Object Gaussian for Monocular 6D Pose Estimation from Sparse Views**
*Luqing Luo, Shichu Sun, Jiangang Yang, Linfang Zheng, Jinwei Du, Jian Liu*
arXiv preprint, 4 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.02581)]**Single-View 3D Reconstruction via SO(2)-Equivariant Gaussian Sculpting Networks**
*Ruihan Xu, Anthony Opipari, Joshua Mah, Stanley Lewis, Haoran Zhang, Hanzhe Guo, Odest Chadwicke Jenkins*
RSS 2024, 11 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.07245)]**Vista3D: Unravel the 3D Darkside of a Single Image**
*Qiuhong Shen, Xingyi Yang, Michael Bi Mi, Xinchao Wang*
ECCV 2024, 18 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12193)] [[Code](https://github.com/florinshen/Vista3D)]**MVPGS: Excavating Multi-view Priors for Gaussian Splatting from Sparse Input Views**
*Wangze Xu, Huachen Gao, Shihe Shen, Rui Peng, Jianbo Jiao, Ronggang Wang*
ECCV 2024, 22 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.14316)] [[Project](https://zezeaaa.github.io/projects/MVPGS/)] [[Code](https://github.com/zezeaaa/MVPGS)]**HiSplat: Hierarchical 3D Gaussian Splatting for Generalizable Sparse-View Reconstruction**
*Shengji Tang, Weicai Ye, Peng Ye, Weihao Lin, Yang Zhou, Tao Chen, Wanli Ouyang*
arXiv preprint, 8 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.06245)] [[Project](https://open3dvlab.github.io/HiSplat/)] [[Code](https://github.com/Open3DVLab/HiSplat)]**MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields**
*Yuru Xiao, Deming Zhai, Wenbo Zhao, Kui Jiang, Junjun Jiang, Xianming Liu*
arXiv preprint, 15 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.11394)]**Few-shot Novel View Synthesis using Depth Aware 3D Gaussian Splatting**
*Raja Kumar, Vanshika Vats*
ECCV 2024 Workshop S3DSGR, 14 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.11080)] [[Code](https://github.com/raja-kumar/depth-aware-3DGS)]**3DGS-Enhancer: Enhancing Unbounded 3D Gaussian Splatting with View-consistent 2D Diffusion Priors**
*Xi Liu, Chaoyi Zhou, Siyu Huang*
NeurIPS 2024, 21 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.16266)] [[Project](https://xiliu8006.github.io/3DGS-Enhancer-project/)]**Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis**
*Liang Han, Junsheng Zhou, Yu-Shen Liu, Zhizhong Han*
NeurIPS 2024, 24 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.18822)] [[Project](https://hanl2010.github.io/Binocular3DGS/)] [[Code](https://github.com/hanl2010/Binocular3DGS)]**Structure Consistent Gaussian Splatting with Matching Prior for Few-shot Novel View Synthesis**
*Rui Peng, Wangze Xu, Luyang Tang, Liwei Liao, Jianbo Jiao, Ronggang Wang*
NeurIPS 2024, 6 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.03637)] [[Code](https://github.com/prstrive/SCGaussian)]**FewViewGS: Gaussian Splatting with Few View Matching and Multi-stage Training**
*Ruihong Yin, Vladimir Yugay, Yue Li, Sezer Karaoglu, Theo Gevers*
NeurIPS 2024, 4 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.02229)]**GBR: Generative Bundle Refinement for High-fidelity Gaussian Splatting and Meshing**
*Jianing Zhang, Yuchao Zheng, Ziwei Li, Qionghai Dai, Xiaoyun Yuan*
8 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.05908)]**TSGaussian: Semantic and Depth-Guided Target-Specific Gaussian Splatting from Sparse Views**
*Liang Zhao, Zehan Bao, Yi Xie, Hong Chen, Yaohui Chen, Weifu Li*
13 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.10051)] [[Code](https://github.com/leon2000-ai/TSGaussian)]**SolidGS: Consolidating Gaussian Surfel Splatting for Sparse-View Surface Reconstruction**
*Zhuowen Shen, Yuan Liu, Zhang Chen, Zhong Li, Jiepeng Wang, Yongqing Liang, Zhengming Yu, Jingdong Zhang, Yi Xu, Scott Schaefer, Xin Li, Wenping Wang*
19 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.15400)] [[Project](https://mickshen7558.github.io/projects/SolidGS/)] )]**Improving Geometry in Sparse-View 3DGS via Reprojection-based DoF Separation**
*Yongsung Kim, Minjun Park, Jooyoung Choi, Sungroh Yoon*
19 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.14568)]## 3DGS Weak Camera Pose
**COLMAP-Free 3D Gaussian Splatting**
*Yang Fu, Sifei Liu, Amey Kulkarni, Jan Kautz, Alexei A. Efros, Xiaolong Wang*
CVPR 2024, 12 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.07504)] [[Project](https://oasisyang.github.io/colmap-free-3dgs/)] [[Video](https://www.youtube.com/watch?si=kqu3dbXopDdNg0wX&v=mGeVQS4ExK4&feature=youtu.be)]**iComMa: Inverting 3D Gaussians Splatting for Camera Pose Estimation via Comparing and Matching**
*Yuan Sun, Xuan Wang, Yunfan Zhang, Jie Zhang, Caigui Jiang, Yu Guo, Fei Wang*
arXiv preprint, 14 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.09031)]**A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose**
*Kaiwen Jiang, Yang Fu, Mukund Varma T, Yash Belhe, Xiaolong Wang, Hao Su, Ravi Ramamoorthi*
arXiv preprint, 6 May 2024
[[arXiv](https://arxiv.org/abs/2405.03659)]:fire:**6DGS: 6D Pose Estimation from a Single Image and a 3D Gaussian Splatting Model**
*Matteo Bortolon, Theodore Tsesmelis, Stuart James, Fabio Poiesi, Alessio Del Bue*
ECCV 2024, 22 Jul 2024Abstract
We propose 6DGS to estimate the camera pose of a target RGB image given a 3D Gaussian Splatting (3DGS) model representing the scene. 6DGS avoids the iterative process typical of analysis-by-synthesis methods (e.g. iNeRF) that also require an initialization of the camera pose in order to converge. Instead, our method estimates a 6DoF pose by inverting the 3DGS rendering process. Starting from the object surface, we define a radiant Ellicell that uniformly generates rays departing from each ellipsoid that parameterize the 3DGS model. Each Ellicell ray is associated with the rendering parameters of each ellipsoid, which in turn is used to obtain the best bindings between the target image pixels and the cast rays. These pixel-ray bindings are then ranked to select the best scoring bundle of rays, which their intersection provides the camera center and, in turn, the camera rotation. The proposed solution obviates the necessity of an "a priori" pose for initialization, and it solves 6DoF pose estimation in closed form, without the need for iterations. Moreover, compared to the existing Novel View Synthesis (NVS) baselines for pose estimation, 6DGS can improve the overall average rotational accuracy by 12% and translation accuracy by 22% on real scenes, despite not requiring any initialization pose. At the same time, our method operates near real-time, reaching 15fps on consumer hardware.[[arXiv](https://arxiv.org/abs/2407.15484)] [[Project](https://mbortolon97.github.io/6dgs/)] [[Code](https://github.com/mbortolon97/6dgs)] [[Video](https://www.youtube.com/watch?v=SB4ToD93NFA)]
**GSLoc: Efficient Camera Pose Refinement via 3D Gaussian Splatting**
*Changkun Liu, Shuai Chen, Yash Bhalgat, Siyan Hu, Zirui Wang, Ming Cheng, Victor Adrian Prisacariu, Tristan Braud*
arXiv preprint, 20 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.11085)]**Splatt3R: Zero-shot Gaussian Splatting from Uncalibrated Image Pairs**
*Brandon Smart, Chuanxia Zheng, Iro Laina, Victor Adrian Prisacariu*
arXiv preprint, 25 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.13912)] [[Project](https://splatt3r.active.vision/)] [[Code](https://github.com/btsmart/splatt3r)]**HGSLoc: 3DGS-based Heuristic Camera Pose Refinement**
*Zhongyan Niu, Zhen Tan*
arXiv preprint, 17 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.10925)]**GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization**
*Gennady Sidorov, Malik Mohrat, Ksenia Lebedeva, Ruslan Rakhimov, Sergey Kolyubin*
arXiv preprint, 24 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.16502)] [[Project](https://gsplatloc.github.io/)] [[Video](https://www.youtube.com/watch?v=3UKQQPLlqqg)] [[Code](https://github.com/haksorus/gsplatloc)]**SplatLoc: 3D Gaussian Splatting-based Visual Localization for Augmented Reality**
*Hongjia Zhai, Xiyu Zhang, Boming Zhao, Hai Li, Yijia He, Zhaopeng Cui, Hujun Bao, Guofeng Zhang*
arXiv preprint, 21 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.14067)] [[Project](https://zju3dv.github.io/splatloc/)] [[Code](https://github.com/zhaihongjia/SplatLoc)]**Generating 3D-Consistent Videos from Unposed Internet Photos**
*Gene Chou, Kai Zhang, Sai Bi, Hao Tan, Zexiang Xu, Fujun Luan, Bharath Hariharan, Noah Snavely*
arXiv preprint, 20 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.13549)]**ZeroGS: Training 3D Gaussian Splatting from Unposed Images**
*Yu Chen, Rolandos Alexandros Potamias, Evangelos Ververas, Jifei Song, Jiankang Deng, Gim Hee Lee*
24 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.15779)] [[Project](https://aibluefisher.github.io/ZeroGS/)] [[Code](https://github.com/aibluefisher/ZeroGS)]**SfM-Free 3D Gaussian Splatting via Hierarchical Training**
*Bo Ji, Angela Yao*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01553)] [[Code](https://github.com/jibo27/3DGS_Hierarchical_Training)]**DynSUP: Dynamic Gaussian Splatting from An Unposed Image Pair**
*Weihang Li, Weirong Chen, Shenhan Qian, Jiajie Chen, Daniel Cremers, Haoang Li*
1 Sec 2024
[[arXiv](https://arxiv.org/abs/2412.00851)] [[Project](https://colin-de.github.io/DynSUP/)]## 3DGS Object Pose Estimation/Tracking/Detection
**Object Pose Estimation Using Implicit Representation For Transparent Objects**
*Varun Burde, Artem Moroz, Vit Zeman, Pavel Burget*
arXiv preprint, 17 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.13465)]**GS2Pose: Tow-stage 6D Object Pose Estimation Guided by Gaussian Splatting**
*Jilan Mei, Junbo Li, Cai Meng*
arXiv preprint, 6 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.03807)]**GSGTrack: Gaussian Splatting-Guided Object Pose Tracking from RGB Videos**
*Zhiyuan Chen, Fan Lu, Guo Yu, Bin Li, Sanqing Qu, Yuan Huang, Changhong Fu, Guang Chen*
3 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.02267)]**6DOPE-GS: Online 6D Object Pose Estimation using Gaussian Splatting**
*Yufeng Jin, Vignesh Prasad, Snehal Jauhri, Mathias Franzius, Georgia Chalvatzaki*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01543)]**GFreeDet: Exploiting Gaussian Splatting and Foundation Models for Model-free Unseen Object Detection in the BOP Challenge 2024**
*Xingyu Liu, Yingyue Li, Chengxi Li, Gu Wang, Chenyangguang Zhang, Ziqin Huang, Xiangyang Ji*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01552)]## 3DGS-NeRF Transfer
**NeRFs to Gaussian Splats, and Back**
*Siming He, Zach Osman, Pratik Chaudhari*
arXiv preprint, 15 May 2024
[[arXiv](https://arxiv.org/abs/2405.09717)] [[Code](https://github.com/grasp-lyrl/NeRFtoGSandBack)]## 3DGS Generalization
**GGRt: Towards Generalizable 3D Gaussians without Pose Priors in Real-Time**
*Hao Li, Yuanyuan Gao, Dingwen Zhang, Chenming Wu, Yalun Dai, Chen Zhao, Haocheng Feng, Errui Ding, Jingdong Wang, Junwei Han*
arXiv preprint, 15 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.10147)] [[Project](https://3d-aigc.github.io/GGRt/)]**latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction**
*Christopher Wewer, Kevin Raj, Eddy Ilg, Bernt Schiele, Jan Eric Lenssen*
arXiv preprint, 24 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.16292)] [[Project](https://geometric-rl.mpi-inf.mpg.de/latentsplat/)]**Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo**
*Tianqi Liu, Guangcong Wang, Shoukang Hu, Liao Shen, Xinyi Ye, Yuhang Zang, Zhiguo Cao, Wei Li, Ziwei Liu*
arXiv preprint, 20 May 2024
[[arXiv](https://arxiv.org/abs/2405.12218)] [[Project](https://mvsgaussian.github.io/)] [[Code](https://github.com/TQTQliu/MVSGaussian)] [[Video](https://www.youtube.com/watch?v=4TxMQ9RnHMA)]**GS-Net: Generalizable Plug-and-Play 3D Gaussian Splatting Module**
*Yichen Zhang, Zihan Wang, Jiali Han, Peilin Li, Jiaxun Zhang, Jianqiang Wang, Lei He, Keqiang Li*
arXiv preprint, 17 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.11307)]**DepthSplat: Connecting Gaussian Splatting and Depth**
*Haofei Xu, Songyou Peng, Fangjinhua Wang, Hermann Blum, Daniel Barath, Andreas Geiger, Marc Pollefeys*
arXiv preprint, 17 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.13862)] [[Project](https://haofeixu.github.io/depthsplat/)] [[Code](https://github.com/cvg/depthsplat)][[arXiv](https://arxiv.org/abs/2410.24207)] [[Project](https://noposplat.github.io/)] [[Code](https://github.com/cvg/NoPoSplat)]
**Epipolar-Free 3D Gaussian Splatting for Generalizable Novel View Synthesis**
*Zhiyuan Min, Yawei Luo, Jianwen Sun, Yi Yang*
NeurIPS 2024, 30 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.22817)] [[Project](https://tatakai1.github.io/efreesplat/)]**GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views**
*Boyao Zhou, Shunyuan Zheng, Hanzhang Tu, Ruizhi Shao, Boning Liu, Shengping Zhang, Liqiang Nie, Yebin Liu*
CVPR 2024, 18 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.11363)] [[Project](https://yaourtb.github.io/GPS-Gaussian+/)]**SmileSplat: Generalizable Gaussian Splats for Unconstrained Sparse Images**
*Yanyan Li, Yixin Fang, Federico Tombari, Gim Hee Lee*
27 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.18072)]**Distractor-free Generalizable 3D Gaussian Splatting**
*Yanqi Bao, Jing Liao, Jing Huo, Yang Gao*
26 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.17605)] [[Code](https://github.com/bbbbby-99/DGGS)]**SelfSplat: Pose-Free and 3D Prior-Free Generalizable 3D Gaussian Splatting**
*Gyeongjin Kang, Jisang Yoo, Jihyeon Park, Seungtae Nam, Hyeonsoo Im, Sangheon Shin, Sangpil Kim, Eunbyung Park*
26 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.17190)] [[Project](https://gynjn.github.io/selfsplat/)] [[Code](https://github.com/Gynjn/selfsplat)]**Generative Densification: Learning to Densify Gaussians for High-Fidelity Generalizable 3D Reconstruction
**
*Seungtae Nam, Xiangyu Sun, Gyeongjin Kang, Younggeun Lee, Seungjun Oh, Eunbyung Park*
9 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.06234)] [[Project](https://stnamjef.github.io/GenerativeDensification/)] [[Code](https://github.com/stnamjef/GenerativeDensification)]**Splatter-360: Generalizable 360∘ Gaussian Splatting for Wide-baseline Panoramic Images**
*Zheng Chen, Chenming Wu, Zhelun Shen, Chen Zhao, Weicai Ye, Haocheng Feng, Errui Ding, Song-Hai Zhang*
9 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.06250)] [[Project](https://3d-aigc.github.io/Splatter-360/)] [[Code](https://github.com/thucz/splatter360)]**GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency**
*Dongyue Lu, Lingdong Kong, Tianxin Huang, Gim Hee Lee*
12 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.09511)] [[Project](https://dylanorange.github.io/projects/geal/)] [[Code](https://github.com/DylanOrange/geal)]## Generalizable 3DGS with Feed-forward Networks
**DUSt3R: Geometric 3D Vision Made Easy**
*Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, Jerome Revaud*
21 Dec 2023Abstract
Multi-view stereo reconstruction (MVS) in the wild requires to first estimate the camera parameters e.g. intrinsic and extrinsic parameters. These are usually tedious and cumbersome to obtain, yet they are mandatory to triangulate corresponding pixels in 3D space, which is the core of all best performing MVS algorithms. In this work, we take an opposite stance and introduce DUSt3R, a radically novel paradigm for Dense and Unconstrained Stereo 3D Reconstruction of arbitrary image collections, i.e. operating without prior information about camera calibration nor viewpoint poses. We cast the pairwise reconstruction problem as a regression of pointmaps, relaxing the hard constraints of usual projective camera models. We show that this formulation smoothly unifies the monocular and binocular reconstruction cases. In the case where more than two images are provided, we further propose a simple yet effective global alignment strategy that expresses all pairwise pointmaps in a common reference frame. We base our network architecture on standard Transformer encoders and decoders, allowing us to leverage powerful pretrained models. Our formulation directly provides a 3D model of the scene as well as depth information, but interestingly, we can seamlessly recover from it, pixel matches, relative and absolute camera. Exhaustive experiments on all these tasks showcase that the proposed DUSt3R can unify various 3D vision tasks and set new SoTAs on monocular/multi-view depth estimation as well as relative pose estimation. In summary, DUSt3R makes many geometric 3D vision tasks easy.[[arXiv](https://arxiv.org/abs/2312.14132)]
**Flash3D: Feed-Forward Generalisable 3D Scene Reconstruction from a Single Image**
*Stanislaw Szymanowicz, Eldar Insafutdinov, Chuanxia Zheng, Dylan Campbell, João F. Henriques, Christian Rupprecht, Andrea Vedaldi*
arXiv preprint, 6 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.04343)] [[Project](https://www.robots.ox.ac.uk/~vgg/research/flash3d/)]**PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting**
*Sunghwan Hong, Jaewoo Jung, Heeseong Shin, Jisang Han, Jiaolong Yang, Chong Luo, Seungryong Kim*
arXiv preprint, 29 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.22128)] [[Project](https://cvlab-kaist.github.io/PF3plat/)] [[Code](https://github.com/cvlab-kaist/PF3plat)]:fire:**No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images**
*Botao Ye, Sifei Liu, Haofei Xu, Xueting Li, Marc Pollefeys, Ming-Hsuan Yang, Songyou Peng*
arXiv preprint, 31 Oct 2024Abstract
We introduce NoPoSplat, a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from \textit{unposed} sparse multi-view images. Our model, trained exclusively with photometric loss, achieves real-time 3D Gaussian reconstruction during inference. To eliminate the need for accurate pose input during reconstruction, we anchor one input view's local camera coordinates as the canonical space and train the network to predict Gaussian primitives for all views within this space. This approach obviates the need to transform Gaussian primitives from local coordinates into a global coordinate system, thus avoiding errors associated with per-frame Gaussians and pose estimation. To resolve scale ambiguity, we design and compare various intrinsic embedding methods, ultimately opting to convert camera intrinsics into a token embedding and concatenate it with image tokens as input to the model, enabling accurate scene scale prediction. We utilize the reconstructed 3D Gaussians for novel view synthesis and pose estimation tasks and propose a two-stage coarse-to-fine pipeline for accurate pose estimation. Experimental results demonstrate that our pose-free approach can achieve superior novel view synthesis quality compared to pose-required methods, particularly in scenarios with limited input image overlap. For pose estimation, our method, trained without ground truth depth or explicit matching loss, significantly outperforms the state-of-the-art methods with substantial improvements. This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios. Code and trained models are available at this https URL.[[arXiv](https://arxiv.org/abs/2410.24207)] [[Project](https://noposplat.github.io/)] [[Code](https://github.com/cvg/NoPoSplat)]
**MVSplat360: Feed-Forward 360 Scene Synthesis from Sparse Views**
*Yuedong Chen, Chuanxia Zheng, Haofei Xu, Bohan Zhuang, Andrea Vedaldi, Tat-Jen Cham, Jianfei Cai*
NeurIPS 2024, 7 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.04924)] [[Project](https://donydchen.github.io/mvsplat360/)] [[Code](https://github.com/donydchen/mvsplat360)]**NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model**
*Jinpeng Liu, Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Ying Shan, Yansong Tang*
25 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.16779)]**PreF3R: Pose-Free Feed-Forward 3D Gaussian Splatting from Variable-length Image Sequence**
*Zequn Chen, Jiezhi Yang, Heng Yang*
25 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.16877)] [[Project](https://computationalrobotics.seas.harvard.edu/PreF3R/)] [[Code](https://github.com/ComputationalRobotics/PreF3R)]**Wonderland: Navigating 3D Scenes from a Single Image**
*Hanwen Liang, Junli Cao, Vidit Goel, Guocheng Qian, Sergei Korolev, Demetri Terzopoulos, Konstantinos N. Plataniotis, Sergey Tulyakov, Jian Ren*
16 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.12091v1)] [[Project](https://snap-research.github.io/wonderland/)]**PanSplat: 4K Panorama Synthesis with Feed-Forward Gaussian Splatting**
*Cheng Zhang, Haofei Xu, Qianyi Wu, Camilo Cruz Gambardella, Dinh Phung, Jianfei Cai*
16 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.12096)] [[Code](https://github.com/chengzhag/PanSplat)]**MV-DUSt3R+: Single-Stage Scene Reconstruction from Sparse Views In 2 Seconds**
*Zhenggang Tang, Yuchen Fan, Dilin Wang, Hongyu Xu, Rakesh Ranjan, Alexander Schwing, Zhicheng Yan*
9 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.06974)]**FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction**
*Jiale Xu, Shenghua Gao, Ying Shan*
12 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.09573)] [[Project](https://bluestyle97.github.io/projects/freesplatter/)] [[Code](https://github.com/TencentARC/FreeSplatter)]**LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors**
*Yabo Chen, Chen Yang, Jiemin Fang, Xiaopeng Zhang, Lingxi Xie, Wei Shen, Wenrui Dai, Hongkai Xiong, Qi Tian*
12 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.09597)] [[Project](https://liftimage3d.github.io/)]**CATSplat: Context-Aware Transformer with Spatial Guidance for Generalizable 3D Gaussian Splatting from A Single-View Image**
*Wonseok Roh, Hwanhee Jung, Jong Wook Kim, Seunggwan Lee, Innfarn Yoo, Andreas Lugmayr, Seunggeun Chi, Karthik Ramani, Sangpil Kim*
17 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.12906)]**OmniSplat: Taming Feed-Forward 3D Gaussian Splatting for Omnidirectional Images with Editable Capabilities**
*Suyoung Lee, Jaeyoung Chung, Kihoon Kim, Jaeyoo Huh, Gunhee Lee, Minsoo Lee, Kyoung Mu Lee*
21 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.16604)]## 3DGS Indoor Scene Reconstruction
**360-GS: Layout-guided Panoramic Gaussian Splatting For Indoor Roaming**
*Jiayang Bai, Letian Huang, Jie Guo, Wen Gong, Yuanqi Li, Yanwen Guo*
arXiv preprint, 1 Feb 2024
[[arXiv]](https://arxiv.org/abs/2402.00763)**MonoSelfRecon: Purely Self-Supervised Explicit Generalizable 3D Reconstruction of Indoor Scenes from Monocular RGB Views**
*Runfa Li, Upal Mahbub, Vasudev Bhaskaran, Truong Nguyen*
arXiv preprint, 10 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.06753)]**FreeSplat: Generalizable 3D Gaussian Splatting Towards Free-View Synthesis of Indoor Scenes**
*Yunsong Wang, Tianxin Huang, Hanlin Chen, Gim Hee Lee*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.17958)]**Scalable Indoor Novel-View Synthesis using Drone-Captured 360 Imagery with 3D Gaussian Splatting**
*Yuanbo Chen, Chengyu Zhang, Jason Wang, Xuefan Gao, Avideh Zakhor*
ECCV 2024 Workshop S3DSGR, 15 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.11285)]**2DGS-Room: Seed-Guided 2D Gaussian Splatting with Geometric Constrains for High-Fidelity Indoor Scene Reconstruction**
*Wanting Zhang, Haodong Xiang, Zhichao Liao, Xiansong Lai, Xinghui Li, Long Zeng*
4 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.03428)]## 3DGS Based Wild Scene Reconstruction
**SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians**
*Hiba Dahmani, Moussab Bennehar, Nathan Piasco, Luis Roldao, Dzmitry Tsishkou*
arXiv preprint, 15 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.10427)]**Gaussian in the Wild: 3D Gaussian Splatting for Unconstrained Image Collections**
*Dongbin Zhang, Chuming Wang, Weitao Wang, Peihao Li, Minghan Qin, Haoqian Wang*
arXiv preprint, 23 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.15704)]**WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections**
*Yuze Wang, Junyi Wang, Yue Qi*
arXiv preprint, 4 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.02407)] [[Project](https://yuzewang1998.github.io/we-gs.github.io/)]**Wild-GS: Real-Time Novel View Synthesis from Unconstrained Photo Collections**
*Jiacong Xu, Yiqun Mei, Vishal M. Patel*
arXiv preprint, 14 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.10373)]:fire:**WildGaussians: 3D Gaussian Splatting in the Wild**
*Jonas Kulhanek, Songyou Peng, Zuzana Kukelova, Marc Pollefeys, Torsten Sattler*
NeurIPS 2024, 11 Jul 2024Abstract
While the field of 3D scene reconstruction is dominated by NeRFs due to their photorealistic quality, 3D Gaussian Splatting (3DGS) has recently emerged, offering similar quality with real-time rendering speeds. However, both methods primarily excel with well-controlled 3D scenes, while in-the-wild data - characterized by occlusions, dynamic objects, and varying illumination - remains challenging. NeRFs can adapt to such conditions easily through per-image embedding vectors, but 3DGS struggles due to its explicit representation and lack of shared parameters. To address this, we introduce WildGaussians, a novel approach to handle occlusions and appearance changes with 3DGS. By leveraging robust DINO features and integrating an appearance modeling module within 3DGS, our method achieves state-of-the-art results. We demonstrate that WildGaussians matches the real-time rendering speed of 3DGS while surpassing both 3DGS and NeRF baselines in handling in-the-wild data, all within a simple architectural framework.[[arXiv](https://arxiv.org/abs/2407.08447)] [[Project](https://wild-gaussians.github.io/)] [[Code](https://github.com/jkulhanek/wild-gaussians/)]
## 3DGS Based Large Scene Reconstruction
**Periodic Vibration Gaussian: Dynamic Urban Scene Reconstruction and Real-time Rendering**
*Yurui Chen, Chun Gu, Junzhe Jiang, Xiatian Zhu, Li Zhang*
arXiv preprint, 30 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.18561)] [[Project](https://fudan-zvg.github.io/PVG/)]**GauU-Scene: A Scene Reconstruction Benchmark on Large Scale 3D Reconstruction Dataset Using Gaussian Splatting**
*Butian Xiong, Zhuo Li, Zhen Li*
arXiv preprint, 25 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.14032)]**GaussianPro: 3D Gaussian Splatting with Progressive Propagation**
*Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, Xuejin Chen*
arXiv preprint, 22 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.14650)] [[Project](https://kcheng1021.github.io/gaussianpro.github.io/)] [[Code](https://github.com/kcheng1021/GaussianPro)]:fire:**VastGaussian: Vast 3D Gaussians for Large Scene**
*Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu, Songcen Xu, Youliang Yan, Wenming Yang*
CVPR 2024, 27 Feb, 2024Abstract
Existing NeRF-based methods for large scene reconstruction often have limitations in visual quality and rendering speed. While the recent 3D Gaussian Splatting works well on small-scale and object-centric scenes, scaling it up to large scenes poses challenges due to limited video memory, long optimization time, and noticeable appearance variations. To address these challenges, we present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting. We propose a progressive partitioning strategy to divide a large scene into multiple cells, where the training cameras and point cloud are properly distributed with an airspace-aware visibility criterion. These cells are merged into a complete scene after parallel optimization. We also introduce decoupled appearance modeling into the optimization process to reduce appearance variations in the rendered images. Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets, enabling fast optimization and high-fidelity real-time rendering.[[arXiv](https://arxiv.org/abs/2402.17427)] [[Project](https://vastgaussian.github.io/)]
:fire:**Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians**
*Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, Bo Dai*
arXiv preprint, 26 Mar 2024Abstract
The recent 3D Gaussian splatting (3D-GS) has shown remarkable rendering fidelity and efficiency compared to NeRF-based neural scene representations. While demonstrating the potential for real-time rendering, 3D-GS encounters rendering bottlenecks in large scenes with complex details due to an excessive number of Gaussian primitives located within the viewing frustum. This limitation is particularly noticeable in zoom-out views and can lead to inconsistent rendering speeds in scenes with varying details. Moreover, it often struggles to capture the corresponding level of details at different scales with its heuristic density control operation. Inspired by the Level-of-Detail (LOD) techniques, we introduce Octree-GS, featuring an LOD-structured 3D Gaussian approach supporting level-of-detail decomposition for scene representation that contributes to the final rendering results. Our model dynamically selects the appropriate level from the set of multi-resolution anchor points, ensuring consistent rendering performance with adaptive LOD adjustments while maintaining high-fidelity rendering results.[[arXiv](https://arxiv.org/abs/2403.17898)] [[Project](https://city-super.github.io/octree-gs/)] [[Code](https://github.com/city-super/Octree-GS)]
**SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior**
*Zhongrui Yu, Haoran Wang, Jinze Yang, Hanzhang Wang, Zeke Xie, Yunfeng Cai, Jiale Cao, Zhong Ji, Mingming Sun*
arXiv preprint, 29 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.20079)]**HO-Gaussian: Hybrid Optimization of 3D Gaussian Splatting for Urban Scenes**
*Zhuopeng Li, Yilin Zhang, Chenming Wu, Jianke Zhu, Liangjun Zhang*
arXiv preprint, 29 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.20032)]:fire:**CityGaussian: Real-time High-quality Large-Scale Scene Rendering with Gaussians**
*Yang Liu, He Guan, Chuanchen Luo, Lue Fan, Junran Peng, Zhaoxiang Zhang*
ECCV 2024, 1 Apr 2024Abstract
The advancement of real-time 3D scene reconstruction and novel view synthesis has been significantly propelled by 3D Gaussian Splatting (3DGS). However, effectively training large-scale 3DGS and rendering it in real-time across various scales remains challenging. This paper introduces CityGaussian (CityGS), which employs a novel divide-and-conquer training approach and Level-of-Detail (LoD) strategy for efficient large-scale 3DGS training and rendering. Specifically, the global scene prior and adaptive training data selection enables efficient training and seamless fusion. Based on fused Gaussian primitives, we generate different detail levels through compression, and realize fast rendering across various scales through the proposed block-wise detail levels selection and aggregation strategy. Extensive experimental results on large-scale scenes demonstrate that our approach attains state-of-theart rendering quality, enabling consistent real-time rendering of largescale scenes across vastly different scales. Our project page is available at this https URL.[[arXiv](https://arxiv.org/abs/2404.01133)] [[Project](https://dekuliutesla.github.io/citygs/)] [[Code](https://github.com/DekuLiuTesla/CityGaussian)]
**LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives**
*Jiadi Cui, Junming Cao, Yuhui Zhong, Liao Wang, Fuqiang Zhao, Penghao Wang, Yifan Chen, Zhipeng He, Lan Xu, Yujiao Shi, Yingliang Zhang, Jingyi Yu*
arXiv preprint, 15 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.09748)] [[Project](https://zhaofuq.github.io/LetsGo/)]**GS-LRM: Large Reconstruction Model for 3D Gaussian Splatting**
*Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, Zexiang Xu*
arXiv preprint, 30 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.19702)] [[Project](https://sai-bi.github.io/project/gs-lrm/)]**DoGaussian: Distributed-Oriented Gaussian Splatting for Large-Scale 3D Reconstruction Via Gaussian Consensus**
*Yu Chen, Gim Hee Lee*
arXiv preprint, 22 May 2024
[[arXiv](https://arxiv.org/abs/2405.13943)] [[Project](https://aibluefisher.github.io/DoGaussian/)] [[Code](https://github.com/aibluefisher/DoGaussian)]**PyGS: Large-scale Scene Representation with Pyramidal 3D Gaussian Splatting**
*Zipeng Wang, Dan Xu*
arXiv preprint, 27 May 2024
[[arXiv](https://arxiv.org/abs/2405.16829)]**GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction**
*Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, Jiwen Lu*
arXiv preprint, 27 May 2024
[[arXiv](https://arxiv.org/abs/2405.17429)] [[Code](https://github.com/huang-yh/GaussianFormer)]**3D StreetUnveiler with Semantic-Aware 2DGS**
*Jingwei Xu, Yikai Wang, Yiqun Zhao, Yanwei Fu, Shenghua Gao*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.18416)] [[Project](https://streetunveiler.github.io/)] [[Code](https://github.com/DavidXu-JJ/StreetUnveiler)]**A Hierarchical 3D Gaussian Representation for Real-Time Rendering of Very Large Datasets**
*Bernhard Kerbl, Andréas Meuleman, Georgios Kopanas, Michael Wimmer, Alexandre Lanvin, George Drettakis*
arXiv preprint, 17 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.12080)] [[Project](https://repo-sam.inria.fr/fungraph/hierarchical-3d-gaussians/)]**VEGS: View Extrapolation of Urban Scenes in 3D Gaussian Splatting using Learned Priors**
*Sungwon Hwang, Min-Jung Kim, Taewoong Kang, Jayeon Kang, Jaegul Choo*
arXiv preprint, 3 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.02945)] [[Project](https://vegs3d.github.io/)]**FlashGS: Efficient 3D Gaussian Splatting for Large-scale and High-resolution Rendering**
*Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi Wang, Tao Liu, Zhilin Pei, Hengjie Li, Xingcheng Zhang, Bo Dai*
arXiv preprint, 15 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.07967)]**GigaGS: Scaling up Planar-Based 3D Gaussians for Large Scene Surface Reconstruction**
*Junyi Chen, Weicai Ye, Yifan Wang, Danpeng Chen, Di Huang, Wanli Ouyang, Guofeng Zhang, Yu Qiao, Tong He*
arXiv preprint, 10 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.06685)]**LI-GS: Gaussian Splatting with LiDAR Incorporated for Accurate Large-Scale Reconstruction**
*Changjian Jiang, Ruilan Gao, Kele Shao, Yue Wang, Rong Xiong, Yu Zhang*
arXiv preprint, 19 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12899)]**GaRField++: Reinforced Gaussian Radiance Fields for Large-Scale 3D Scene Reconstruction**
*Hanyue Zhang, Zhiliu Yang, Xinhe Zuo, Yuxin Tong, Ying Long, Chen Liu*
arXiv preprint, 19 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12774)]**DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments**
*Mahmud A. Mohamad, Gamal Elghazaly, Arthur Hubert, Raphael Frank*
arXiv preprint, 16 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.10041)] [[Code](https://github.com/sntubix/denser)]**StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting**
*Xiao Cui, Weicai Ye, Yifan Wang, Guofeng Zhang, Wengang Zhou, Tong He, Houqiang Li*
arXiv preprint, 6 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.04354)]**Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats**
*Chen Ziwen, Hao Tan, Kai Zhang, Sai Bi, Fujun Luan, Yicong Hong, Li Fuxin, Zexiang Xu*
arXiv preprint, 16 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.12781)] [[Project](https://arthurhero.github.io/projects/llrm/)]:fire:**SCube: Instant Large-Scale Scene Reconstruction using VoxSplats**
*Xuanchi Ren, Yifan Lu, Hanxue Liang, Zhangjie Wu, Huan Ling, Mike Chen, Sanja Fidler, Francis Williams, Jiahui Huang*
NeurIPS 2024, 26 Oct 2024Abstract
We present SCube, a novel method for reconstructing large-scale 3D scenes (geometry, appearance, and semantics) from a sparse set of posed images. Our method encodes reconstructed scenes using a novel representation VoxSplat, which is a set of 3D Gaussians supported on a high-resolution sparse-voxel scaffold. To reconstruct a VoxSplat from images, we employ a hierarchical voxel latent diffusion model conditioned on the input images followed by a feedforward appearance prediction model. The diffusion model generates high-resolution grids progressively in a coarse-to-fine manner, and the appearance network predicts a set of Gaussians within each voxel. From as few as 3 non-overlapping input images, SCube can generate millions of Gaussians with a 1024^3 voxel grid spanning hundreds of meters in 20 seconds. Past works tackling scene reconstruction from images either rely on per-scene optimization and fail to reconstruct the scene away from input views (thus requiring dense view coverage as input) or leverage geometric priors based on low-resolution models, which produce blurry results. In contrast, SCube leverages high-resolution sparse networks and produces sharp outputs from few views. We show the superiority of SCube compared to prior art using the Waymo self-driving dataset on 3D reconstruction and demonstrate its applications, such as LiDAR simulation and text-to-scene generation.[[arXiv](https://arxiv.org/abs/2410.20030)] [[Project](https://research.nvidia.com/labs/toronto-ai/scube/)] [[Code](https://github.com/nv-tlabs/SCube)] [[Video](https://www.bilibili.com/video/BV1K1mBYCELD/)]
**ULSR-GS: Ultra Large-scale Surface Reconstruction Gaussian Splatting with Multi-View Geometric Consistency**
*Zhuoxiao Li, Shanliang Yao, Qizhong Gao, Angel F. Garcia-Fernandez, Yong Yue, Xiaohui Zhu*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01402)] [[Project](https://ulsrgs.github.io/)]**Momentum-GS: Momentum Gaussian Self-Distillation for High-Quality Large Scene Reconstruction**
*Jixuan Fan, Wanhua Li, Yifei Han, Yansong Tang*
6 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.04887)] [[Project](https://jixuan-fan.github.io/Momentum-GS_Page/)] [[Code](https://github.com/Jixuan-Fan/Momentum-GS)]**Radiant: Large-scale 3D Gaussian Rendering based on Hierarchical Framework**
*Haosong Peng, Tianyu Qi, Yufeng Zhan, Hao Li, Yalun Dai, Yuanqing Xia*
7 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.05546)]**Proc-GS: Procedural Building Generation for City Assembly with 3D Gaussians**
*Yixuan Li, Xingjian Ran, Linning Xu, Tao Lu, Mulin Yu, Zhenzhi Wang, Yuanbo Xiangli, Dahua Lin, Bo Dai*
10 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.07660)] [[Project](https://city-super.github.io/procgs/)] [[Code](https://github.com/city-super/ProcGS/)]**CoSurfGS:Collaborative 3D Surface Gaussian Splatting with Distributed Learning for Large Scene Reconstruction**
*Yuanyuan Gao, Yalun Dai, Hao Li, Weicai Ye, Junyi Chen, Danpeng Chen, Dingwen Zhang, Tong He, Guofeng Zhang, Junwei Han*
23 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.17612)] [[Project](https://gyy456.github.io/CoSurfGS/)]## 3DGS Autonomous Driving
**DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes**
*Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, Ming-Hsuan Yang*
CVPR 2024, 13 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.07920)] [[Code](https://github.com/VDIGPKU/DrivingGaussian)]**Street Gaussians for Modeling Dynamic Urban Scenes**
*Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang, Xiaowei Zhou, Sida Peng*
arXiv preprint, 2 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.01339)] [[Project](https://zju3dv.github.io/street_gaussians/)] [[Code](https://github.com/zju3dv/street_gaussians)]**TCLC-GS: Tightly Coupled LiDAR-Camera Gaussian Splatting for Surrounding Autonomous Driving Scenes**
*Cheng Zhao, Su Sun, Ruoyu Wang, Yuliang Guo, Jun-Jun Wan, Zhou Huang, Xinyu Huang, Yingjie Victor Chen, Liu Ren*
arXiv preprint, 3 Apr, 2024
[[arXiv](https://arxiv.org/abs/2404.02410)]**S^3 Gaussian: Self-Supervised Street Gaussians for Autonomous Driving**
*Nan Huang, Xiaobao Wei, Wenzhao Zheng, Pengju An, Ming Lu, Wei Zhan, Masayoshi Tomizuka, Kurt Keutzer, Shanghang Zhang*
arXiv preprint, 30 May 2024
[[arXiv](https://arxiv.org/abs/2405.20323)] [[Code](https://github.com/nnanhuang/S3Gaussian/)]**VDG: Vision-Only Dynamic Gaussian for Driving Simulation**
*Hao Li, Jingfeng Li, Dingwen Zhang, Chenming Wu, Jieqi Shi, Chen Zhao, Haocheng Feng, Errui Ding, Jingdong Wang, Junwei Han*
arXiv preprint, 26 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.18198)] [[Project](https://3d-aigc.github.io/VDG/)]**AutoSplat: Constrained Gaussian Splatting for Autonomous Driving Scene Reconstruction**
*Mustafa Khan, Hamidreza Fazlali, Dhruv Sharma, Tongtong Cao, Dongfeng Bai, Yuan Ren, Bingbing Liu*
arXiv preprint, 2 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.02598)] [[Project](https://autosplat.github.io/)]**DHGS: Decoupled Hybrid Gaussian Splatting for Driving Scene**
*Xi Shi, Lingli Chen, Peng Wei, Xi Wu, Tian Jiang, Yonggang Luo, Lecheng Xie*
arXiv preprint, 23 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.16600)] [[Project](https://ironbrotherstyle.github.io/dhgs_web/)]**GaussianBeV: 3D Gaussian Representation meets Perception Models for BeV Segmentation**
*Florian Chabot, Nicolas Granger, Guillaume Lapouge*
arXiv preprint, 19 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.14108)]:fire:**OmniRe: Omni Urban Scene Reconstruction**
*Ziyu Chen, Jiawei Yang, Jiahui Huang, Riccardo de Lutio, Janick Martinez Esturo, Boris Ivanovic, Or Litany, Zan Gojcic, Sanja Fidler, Marco Pavone, Li Song, Yue Wang*
arXiv preprint, 29 Aug 2024Abstract
We introduce OmniRe, a holistic approach for efficiently reconstructing high-fidelity dynamic urban scenes from on-device logs. Recent methods for modeling driving sequences using neural radiance fields or Gaussian Splatting have demonstrated the potential of reconstructing challenging dynamic scenes, but often overlook pedestrians and other non-vehicle dynamic actors, hindering a complete pipeline for dynamic urban scene reconstruction. To that end, we propose a comprehensive 3DGS framework for driving scenes, named OmniRe, that allows for accurate, full-length reconstruction of diverse dynamic objects in a driving log. OmniRe builds dynamic neural scene graphs based on Gaussian representations and constructs multiple local canonical spaces that model various dynamic actors, including vehicles, pedestrians, and cyclists, among many others. This capability is unmatched by existing methods. OmniRe allows us to holistically reconstruct different objects present in the scene, subsequently enabling the simulation of reconstructed scenarios with all actors participating in real-time (~60Hz). Extensive evaluations on the Waymo dataset show that our approach outperforms prior state-of-the-art methods quantitatively and qualitatively by a large margin. We believe our work fills a critical gap in driving reconstruction.[[arXiv](https://arxiv.org/abs/2408.16760)] [[Project](https://ziyc.github.io/omnire/)]
**Drone-assisted Road Gaussian Splatting with Cross-view Uncertainty**
*Saining Zhang, Baijun Ye, Xiaoxue Chen, Yuantao Chen, Zongzheng Zhang, Cheng Peng, Yongliang Shi, Hao Zhao*
BMVC 2024, 27 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.15242)] [[Project](https://sainingzhang.github.io/project/uc-gs/)] [[Code](https://github.com/SainingZhang/uc-gs/)]**GGS: Generalizable Gaussian Splatting for Lane Switching in Autonomous Driving**
*Huasong Han, Kaixuan Zhou, Xiaoxiao Long, Yusen Wang, Chunxia Xiao*
arXiv preprint, 4 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.02382)]**DrivingForward: Feed-forward 3D Gaussian Splatting for Driving Scene Reconstruction from Flexible Surround-view Input**
*Qijian Tian, Xin Tan, Yuan Xie, Lizhuang Ma*
arXiv preprint, 19 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12753)] [[Project](https://fangzhou2000.github.io/projects/drivingforward/)] [[Code](https://github.com/fangzhou2000/DrivingForward)]**RenderWorld: World Model with Self-Supervised 3D Label**
*Ziyang Yan, Wenzhen Dong, Yihua Shao, Yuhang Lu, Liu Haiyang, Jingwen Liu, Haozhe Wang, Zhe Wang, Yan Wang, Fabio Remondino, Yuexin Ma*
arXiv preprint, 17 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.11356)]**UniBEVFusion: Unified Radar-Vision BEVFusion for 3D Object Detection**
*Haocheng Zhao, Runwei Guan, Taoyu Wu, Ka Lok Man, Limin Yu, Yutao Yue*
arXiv preprint, 23 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.14751)]**GSPR: Multimodal Place Recognition Using 3D Gaussian Splatting for Autonomous Driving**
*Zhangshuo Qi, Junyi Ma, Jingyi Xu, Zijie Zhou, Luqi Cheng, Guangming Xiong*
arXiv preprint, 1 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.00299)]**LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting**
*Qifeng Chen, Sheng Yang, Sicong Du, Tao Tang, Peng Chen, Yuchi Huo*
arXiv preprint, 7 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.05111)]**DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation**
*Guosheng Zhao, Chaojun Ni, Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, Boyuan Wang, Youyi Zhang, Wenjun Mei, Xingang Wang*
arXiv preprint, 17 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.13571)] [[Project](https://drivedreamer4d.github.io/)] [[Code](https://github.com/GigaAI-research/DriveDreamer4D)]**DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes**
*Chensheng Peng, Chengwei Zhang, Yixiao Wang, Chenfeng Xu, Yichen Xie, Wenzhao Zheng, Kurt Keutzer, Masayoshi Tomizuka, Wei Zhan*
18 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.11921)] [[Code](https://github.com/chengweialan/DeSiRe-GS)]**GaussianPretrain: A Simple Unified 3D Gaussian Representation for Visual Pre-training in Autonomous Driving**
*Shaoqing Xu, Fang Li, Shengyin Jiang, Ziying Song, Li Liu, Zhi-xin Yang*
19 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.12452)] [[Code](https://github.com/Public-BOTs/GaussianPretrain)]**SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving**
*Georg Hess, Carl Lindström, Maryam Fatemi, Christoffer Petersson, Lennart Svensson*
25 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.16816)] [[Project](https://research.zenseact.com/publications/splatad/)]**EMD: Explicit Motion Modeling for High-Quality Street Gaussian Splatting**
*Xiaobao Wei, Qingpo Wuwu, Zhongyu Zhao, Zhuangzhe Wu, Nan Huang, Ming Lu, Ningning MA, Shanghang Zhang*
23 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.15582)] [[Project](https://qingpowuwu.github.io/emdgaussian.github.io/)]**SplatFlow: Self-Supervised Dynamic Gaussian Splatting in Neural Motion Flow Field for Autonomous Driving**
*Su Sun, Cheng Zhao, Zhuoyang Sun, Yingjie Victor Chen, Mei Chen*
23 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.15482)]**HUGSIM: A Real-Time, Photo-Realistic and Closed-Loop Simulator for Autonomous Driving**
*Hongyu Zhou, Longzhong Lin, Jiabao Wang, Yichong Lu, Dongfeng Bai, Bingbing Liu, Yue Wang, Andreas Geiger, Yiyi Liao*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01718)] [[Project](https://xdimlab.github.io/HUGSIM/)] [[Code](https://github.com/hyzhou404/HUGSIM)]**Driving Scene Synthesis on Free-form Trajectories with Generative Prior**
*Zeyu Yang, Zijie Pan, Yuankun Yang, Xiatian Zhu, Li Zhang*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01717)]**GSRender: Deduplicated Occupancy Prediction via Weakly Supervised 3D Gaussian Splatting**
*Qianpu Sun, Changyong Shu, Sifan Zhou, Zichen Yu, Yan Chen, Dawei Yang, Yuan Chun*
19 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.14579)]**EGSRAL: An Enhanced 3D Gaussian Splatting based Renderer with Automated Labeling for Large-Scale Driving Scene**
*Yixiong Huo, Guangfeng Jiang, Hongyang Wei, Ji Liu, Song Zhang, Han Liu, Xingliang Huang, Mingjie Lu, Jinzhang Peng, Dong Li, Lu Tian, Emad Barsoum*
AAAI 2025, 20 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.15550)]**LiHi-GS: LiDAR-Supervised Gaussian Splatting for Highway Driving Scene Reconstruction**
*Pou - Chun Kung, Xianling Zhang, Katherine A. Skinner, Nikita Jaipuria*
19 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.15447)]**NeRF-To-Real Tester: Neural Radiance Fields as Test Image Generators for Vision of Autonomous Systems**
*Laura Weihl, Bilal Wehbe, Andrzej Wąsowski*
20 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.16141)]## 3DGS Based Occupancy Prediction
**GaussianOcc: Fully Self-supervised and Efficient 3D Occupancy Estimation with Gaussian Splatting**
*Wanshui Gan, Fang Liu, Hongbin Xu, Ningkai Mo, Naoto Yokoya*
arXiv preprint, 21 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.11447)] [[Code](https://github.com/GANWANSHUI/GaussianOcc)]## 3DGS Based on Diffusion
**L3DG: Latent 3D Gaussian Diffusion**
*Barbara Roessle, Norman Müller, Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder, Angela Dai, Matthias Nießner*
SIGGRAPH Asis 2024, 17 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.13530)] [[Project](https://barbararoessle.github.io/l3dg/)] [[Video](https://www.youtube.com/watch?v=UHEEiXCYeLU&feature=youtu.be)]**A Lesson in Splats: Teacher-Guided Diffusion for 3D Gaussian Splats Generation with 2D Supervision**
*Chensheng Peng, Ido Sobol, Masayoshi Tomizuka, Kurt Keutzer, Chenfeng Xu, Or Litany*
1 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.00623)]**How to Use Diffusion Priors under Sparse Views?**
*Qisen Wang, Yifan Zhao, Jiawei Ma, Jia Li*
3 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.02225)] [[Code](https://github.com/iCVTEAM/IPSM)]## 3DGS Based AIGC
**GaussianDiffusion: 3D Gaussian Splatting for Denoising Diffusion Probabilistic Models with Structured Noise**
*Xinhai Li, Huaibin Wang, Kuo-Kun Tseng*
arXiv preprint, 19 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.11221)]**LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching**
*Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang Xu, Yingcong Chen*
arXiv preprint, 19 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.11284)] [[Github](https://github.com/EnVision-Research/LucidDreamer)]**LucidDreamer: Domain-free Generation of 3D Gaussian Splatting Scenes**
*Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee, Kyoung Mu Lee*
arXiv preprint, 22 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.13384)] [[Project](https://luciddreamer-cvlab.github.io/)]**DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation**
*Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, Gang Zeng*
arXiv preprint, 28 Sep 2023
[[arXiv](https://arxiv.org/abs/2309.16653)] [[Project](https://dreamgaussian.github.io/)] [[Github](https://github.com/dreamgaussian/dreamgaussian)]**Text-to-3D using Gaussian Splatting**
*Zilong Chen, Feng Wang, Huaping Liu*
arXiv preprint, 29 Sep 2023
[[arXiv](https://arxiv.org/abs/2309.16585)] [[Project](https://gsgen3d.github.io/)] [[Github](https://github.com/gsgen3d/gsgen)]**GaussianDreamer: Fast Generation from Text to 3D Gaussian Splatting with Point Cloud Priors**
*Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, Xinggang Wang*
arXiv preprint, 12 Oct 2023
[[arXiv](https://arxiv.org/abs/2310.08529)] [[Project](https://taoranyi.com/gaussiandreamer/)] [[Github](https://github.com/hustvl/GaussianDreamer)]**CG3D: Compositional Generation for Text-to-3D via Gaussian Splatting**
*Alexander Vilesov, Pradyumna Chari, Achuta Kadambi*
arXiv preprint, 29 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.17907)]**Text2Immersion: Generative Immersive Scene with 3D Gaussians**
*Hao Ouyang, Kathryn Heal, Stephen Lombardi, Tiancheng Sun*
arXiv preprint, 14 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.09242)] [[Project](https://ken-ouyang.github.io/text2immersion/index.html)]**Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models**
*Huan Ling, Seung Wook Kim, Antonio Torralba, Sanja Fidler, Karsten Kreis*
CVPR 2024, 21 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.13763)] [[Project](https://research.nvidia.com/labs/toronto-ai/AlignYourGaussians/)]**4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency**
*Yuyang Yin, Dejia Xu, Zhangyang Wang, Yao Zhao, Yunchao Wei*
arXiv preprint, 28 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.17225)] [[Project](https://vita-group.github.io/4DGen/)] [[Code](https://github.com/VITA-Group/4DGen)]**DreamGaussian4D: Generative 4D Gaussian Splatting**
*Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao, Gang Zeng, Ziwei Liu*
arXiv preprint, 28 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.17142)] [[Project](https://jiawei-ren.github.io/projects/dreamgaussian4d/)] [[Code](https://github.com/jiawei-ren/dreamgaussian4d)]**IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation**
*Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni, Filippos Kokkinos*
arXiv preprint, 13 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.08682)]**GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting**
*Xiaoyu Zhou, Xingjian Ran, Yajiao Xiong, Jinlin He, Zhiwei Lin, Yongtao Wang, Deqing Sun, Ming-Hsuan Yang*
arXiv preprint, 11 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.07207)]**GVGEN: Text-to-3D Generation with Volumetric Representation**
*Xianglong He, Junyi Chen, Sida Peng, Di Huang, Yangguang Li, Xiaoshui Huang, Chun Yuan, Wanli Ouyang, Tong He*
arXiv preprint, 19 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.12957)] [[Project](https://gvgen.github.io/)]**BrightDreamer: Generic 3D Gaussian Generative Framework for Fast Text-to-3D Synthesis**
*Lutao Jiang, Lin Wang*
arXiv preprint, 17 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.11273)] [[Project](https://vlislab22.github.io/BrightDreamer/)] [[Code](https://github.com/lutao2021/BrightDreamer)]**DreamPolisher: Towards High-Quality Text-to-3D Generation via Geometric Diffusion**
*Yuanze Lin, Ronald Clark, Philip Torr*
arXiv preprint, 25 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.17237)] [[Project](https://yuanze-lin.me/DreamPolisher_page/)] [[Code](https://github.com/yuanze-lin/DreamPolisher)]**GaussianCube: Structuring Gaussian Splatting using Optimal Transport for 3D Generative Modeling**
*Bowen Zhang, Yiji Cheng, Jiaolong Yang, Chunyu Wang, Feng Zhao, Yansong Tang, Dong Chen, Baining Guo*
arXiv preprint, 28 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.19655)] [[Prject](https://gaussiancube.github.io/)] [[Code](https://github.com/GaussianCube/GaussianCube)]**RealmDreamer: Text-Driven 3D Scene Generation with Inpainting and Depth Diffusion**
*Jaidev Shriram, Alex Trevithick, Lingjie Liu, Ravi Ramamoorthi*
arXiv preprint, 10 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.07199)] [[Project](https://realmdreamer.github.io/)]**DreamScene360: Unconstrained Text-to-3D Scene Generation with Panoramic Gaussian Splatting**
*Shijie Zhou, Zhiwen Fan, Dejia Xu, Haoran Chang, Pradyumna Chari, Tejas Bharadwaj, Suya You, Zhangyang Wang, Achuta Kadambi*
arXiv preprint, 10 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.06903)] [[Project](https://dreamscene360.github.io/)]**DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling**
*Xuening Yuan, Hongyu Yang, Yueming Zhao, Di Huang*
arXiv preprint, 14 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.09227)]**DreamScene: 3D Gaussian-based Text-to-3D Scene Generation via Formation Pattern Sampling**
*Haoran Li, Haolin Shi, Wenli Zhang, Wenjun Wu, Yong Liao, Lin Wang, Lik-hang Lee, Pengyuan Zhou*
arXiv preprint, 4 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.03575)]**Interactive3D: Create What You Want by Interactive 3D Generation**
*Shaocong Dong, Lihe Ding, Zhanpeng Huang, Zibin Wang, Tianfan Xue, Dan Xu*
arXiv prepring, 25 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.16510)] [[Project](https://interactive-3d.github.io/)] [[Code](https://github.com/interactive-3d/interactive3d)]**FastScene: Text-Driven Fast 3D Indoor Scene Generation via Panoramic Gaussian Splatting**
*Yikun Ma, Dandan Zhan, Zhi Jin*
IJCAI 2024, 9 May 2024
[[arXiv](https://arxiv.org/abs/2405.05768)]**MagicDrive3D: Controllable 3D Generation for Any-View Rendering in Street Scenes**
*Ruiyuan Gao, Kai Chen, Zhihao Li, Lanqing Hong, Zhenguo Li, Qiang Xu*
arXiv preprint, 23 May 2024
[[arXiv](https://arxiv.org/abs/2405.14475)]**Dreamer XL: Towards High-Resolution Text-to-3D Generation via Trajectory Score Matching**
*Xingyu Miao, Haoran Duan, Varun Ojha, Jun Song, Tejal Shah, Yang Long, Rajiv Ranjan*
arXiv preprint, 18 May 2024
[[arXiv](https://arxiv.org/abs/2405.11252)] [[Code](https://github.com/xingy038/Dreamer-XL)]**EG4D: Explicit Generation of 4D Object without Score Distillation**
*Qi Sun, Zhiyang Guo, Ziyu Wan, Jing Nathan Yan, Shengming Yin, Wengang Zhou, Jing Liao, Houqiang Li*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.18132)] [[Code](https://github.com/jasongzy/EG4D)]**PLA4D: Pixel-Level Alignments for Text-to-4D Gaussian Splatting**
*Qiaowei Miao, Yawei Luo, Yi Yang*
arXiv preprint, 30 May 2024
[[arXiv](https://arxiv.org/abs/2405.19957)] [[Project](https://miaoqiaowei.github.io/PLA4D/)]**Adversarial Generation of Hierarchical Gaussians for 3D Generative Model**
*Sangeek Hyun, Jae-Pil Heo*
arXiv preprint, 5 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.02968)] [[Project](https://hse1032.github.io/gsgan)]**Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion**
*Fangfu Liu, Hanyang Wang, Shunyu Yao, Shengjun Zhang, Jie Zhou, Yueqi Duan*
arXiv preprint, 6 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.04338)] [[Project](https://liuff19.github.io/Physics3D/)]**GaussianCity: Generative Gaussian Splatting for Unbounded 3D City Generation**
*Haozhe Xie, Zhaoxi Chen, Fangzhou Hong, Ziwei Liu*
arXiv preprint, 10 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.06526)]**MVGamba: Unify 3D Content Generation as State Space Sequence Modeling**
*Xuanyu Yi, Zike Wu, Qiuhong Shen, Qingshan Xu, Pan Zhou, Joo-Hwee Lim, Shuicheng Yan, Xinchao Wang, Hanwang Zhang*
arXiv preprint, 10 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.06367)]**L4GM: Large 4D Gaussian Reconstruction Model**
*Jiawei Ren, Kevin Xie, Ashkan Mirzaei, Hanxue Liang, Xiaohui Zeng, Karsten Kreis, Ziwei Liu, Antonio Torralba, Sanja Fidler, Seung Wook Kim, Huan Ling*
arXiv preprint, 14 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.10324)] [[Project](https://research.nvidia.com/labs/toronto-ai/l4gm/)]**GradeADreamer: Enhanced Text-to-3D Generation Using Gaussian Splatting and Multi-View Diffusion**
*Trapoom Ukarapol, Kevin Pruvost*
arXiv preprint, 14 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.09850)] [[Code](https://github.com/trapoom555/GradeADreamer)]**ClotheDreamer: Text-Guided Garment Generation with 3D Gaussians**
*Yufei Liu, Junshu Tang, Chu Zheng, Shijie Zhang, Jinkun Hao, Junwei Zhu, Dongjin Huang*
arXiv preprint, 24 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.16815)] [[Project](https://ggxxii.github.io/clothedreamer/)]**GaussianDreamerPro: Text to Manipulable 3D Gaussians with Highly Enhanced Quality**
*Taoran Yi, Jiemin Fang, Zanwei Zhou, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Xinggang Wang, Qi Tian*
arXiv preprint, 26 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.18462)] [[Project](https://taoranyi.com/gaussiandreamerpro/)] [[Code](https://github.com/hustvl/GaussianDreamerPro)]**TrAME: Trajectory-Anchored Multi-View Editing for Text-Guided 3D Gaussian Splatting Manipulation**
*Chaofan Luo, Donglin Di, Yongjia Ma, Zhou Xue, Chen Wei, Xun Yang, Yebin Liu*
arXiv preprint, 2 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.02034)]**HoloDreamer: Holistic 3D Panoramic World Generation from Text Descriptions**
*Haiyang Zhou, Xinhua Cheng, Wangbo Yu, Yonghong Tian, Li Yuan*
arXiv preprint, 21 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.15187)] [[Project](https://zhouhyocean.github.io/holodreamer/)]**Connecting Consistency Distillation to Score Distillation for Text-to-3D Generation**
*Zongrui Li, Minghui Hu, Qian Zheng, Xudong Jiang*
ECCV 2024, 18 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.13584)] [[Code](https://github.com/LMozart/ECCV2024-GCS-BEG)]**SV4D: Dynamic 3D Content Generation with Multi-Frame and Multi-View Consistency**
*Yiming Xie, Chun-Han Yao, Vikram Voleti, Huaizu Jiang, Varun Jampani*
arXiv preprint, 24 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.17470)] [[Project](https://sv4d.github.io/)] [[Code](https://github.com/Stability-AI/generative-models)]**DreamCouple: Exploring High Quality Text-to-3D Generation Via Rectified Flow**
*Hangyu Li, Xiangxiang Chu, Dingyuan Shi*
arXiv preprint, 9 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.05008)]**Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models**
*Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, Chong-Wah Ngo, Tao Mei*
ACMMM 2024, 11 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.07452)] [[Code](https://github.com/yanghb22-fdu/Hi3D-Official)]**DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping**
*Zeyu Cai, Duotun Wang, Yixun Liang, Zhijing Shao, Ying-Cong Chen, Xiaohang Zhan, Zeyu Wang*
arXiv preprint, 8 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.05099)]**DreamHOI: Subject-Driven Generation of 3D Human-Object Interactions with Diffusion Priors**
*Thomas Hanwen Zhu, Ruining Li, Tomas Jakab*
arXiv preprint, 12 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.08278)]**DreamMesh: Jointly Manipulating and Texturing Triangle Meshes for Text-to-3D Generation**
*Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, Zuxuan Wu, Yu-Gang Jiang, Tao Mei*
ECCV 2024, 11 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.07454)] [[Project](https://dreammesh.github.io/)]**DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation**
*Zhiqi Li, Yiming Chen, Peidong Liu*
NeurIPS 2024, 9 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.06756)]**RGM: Reconstructing High-fidelity 3D Car Assets with Relightable 3D-GS Generative Model from a Single Image**
*Xiaoxue Chen, Jv Zheng, Hao Huang, Haoran Xu, Weihao Gu, Kangliang Chen, He xiang, Huan-ang Gao, Hao Zhao, Guyue Zhou, Yaqin Zhang*
arXiv preprint, 10 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.08181)]**DreamSat: Towards a General 3D Model for Novel View Synthesis of Space Objects**
*Nidhi Mathihalli, Audrey Wei, Giovanni Lavezzi, Peng Mun Siew, Victor Rodriguez-Fernandez, Hodei Urrutxua, Richard Linares*
arXiv preprint, 7 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.05097)] [[Code](https://github.com/ARCLab-MIT/space-nvs)]**Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors**
*Hritam Basak, Hadi Tabatabaee, Shreekant Gayaka, Ming-Feng Li, Xin Yang, Cheng-Hao Kuo, Arnie Sen, Min Sun, Zhaozheng Yin*
arXiv preprint, 12 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.09467)]**3D-Adapter: Geometry-Consistent Multi-View Diffusion for High-Quality 3D Generation**
*Hansheng Chen, Bokui Shen, Yulin Liu, Ruoxi Shi, Linqi Zhou, Connor Z. Lin, Jiayuan Gu, Hao Su, Gordon Wetzstein, Leonidas Guibas*
arXiv preprint, 24 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.18974)] [[Project](https://lakonik.github.io/3d-adapter/)] [[Code](https://github.com/Lakonik/MVEdit)]**CompGS: Unleashing 2D Compositionality for Compositional Text-to-3D via Dynamically Optimizing 3D Gaussians**
*Chongjian Ge, Chenfeng Xu, Yuanfeng Ji, Chensheng Peng, Masayoshi Tomizuka, Ping Luo, Mingyu Ding, Varun Jampani, Wei Zhan*
arXiv preprint, 28 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.20723)] [[Project](https://chongjiange.github.io/compgs.html)]]**DiffGS: Functional Gaussian Splatting Diffusion**
*Junsheng Zhou, Weiqi Zhang, Yu-Shen Liu*
NeurIPS 2024, 25 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.19657)] [[Project](https://junshengzhou.github.io/DiffGS/)] [[Code](https://github.com/weiqi-zhang/DiffGS)]**Baking Gaussian Splatting into Diffusion Denoiser for Fast and Scalable Single-stage Image-to-3D Generation**
*Yuanhao Cai, He Zhang, Kai Zhang, Yixun Liang, Mengwei Ren, Fujun Luan, Qing Liu, Soo Ye Kim, Jianming Zhang, Zhifei Zhang, Yuqian Zhou, Zhe Lin, Alan Yuille*
arXiv preprint, 21 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.14384)] [[Project](https://caiyuanhao1998.github.io/project/DiffusionGS/)]**Direct and Explicit 3D Generation from a Single Image**
*Haoyu Wu, Meher Gitika Karumuri, Chuhang Zou, Seungbae Bang, Yuelong Li, Dimitris Samaras, Sunil Hadap*
3DV 2025, 17 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.10947)] [[Project](https://hao-yu-wu.github.io/gen3d/)] [[Video](https://www.youtube.com/watch?v=SucVXcm_3sY)]**PhyCAGE: Physically Plausible Compositional 3D Asset Generation from a Single Image**
*Han Yan, Mingrui Zhang, Yang Li, Chao Ma, Pan Ji*
27 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.18548)] [[Project](https://wolfball.github.io/phycage/)] [[Video](https://youtu.be/IHQqLli_s2o)]**Turbo3D: Ultra-fast Text-to-3D Generation**
*Hanzhe Hu, Tianwei Yin, Fujun Luan, Yiwei Hu, Hao Tan, Zexiang Xu, Sai Bi, Shubham Tulsiani, Kai Zhang*
5 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.04470)] [[Project](https://turbo-3d.github.io/)]**Text-to-3D Gaussian Splatting with Physics-Grounded Motion Generation**
*Wenqing Wang, Yun Fu*
7 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.05560)]**DSplats: 3D Generation by Denoising Splats-Based Multiview Diffusion Models**
*Kevin Miao, Harsh Agrawal, Qihang Zhang, Federico Semeraro, Marco Cavallo, Jiatao Gu, Alexander Toshev*
11 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.09648)]**Interactive Scene Authoring with Specialized Generative Primitives**
*Clément Jambon, Changwoon Choi, Dongsu Zhang, Olga Sorkine-Hornung, Young Min Kim*
20 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.16253)]## 3DGS Model Compression
### 3DGS Model Compression Surveys
**3DGS.zip: A survey on 3D Gaussian Splatting Compression Methods**
*Milena T. Bagdasarian, Paul Knoll, Florian Barthel, Anna Hilsmann, Peter Eisert, Wieland Morgenstern*
arXiv preprint, 17 Jun 2024
[[arXiv](https://arxiv.org/abs/2407.09510)] [[Project](https://w-m.github.io/3dgs-compression-survey/)]### 3DGS Model Compression Progresses
**LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS**
*Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, Zhangyang Wang*
arXiv preprint, 28 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.17245)] [[Project](https://lightgaussian.github.io/)] [[Video](https://www.bilibili.com/video/BV1QN4y127o9/)]**Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting**
*Joongho Jo, Hyeongwon Kim, Jongsun Park*
arXiv preprint, 21 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.13827)]:fire:**HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression**
*Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, Jianfei Cai*
ECCV 2024, 21 Mar 2024Abstract
3D Gaussian Splatting (3DGS) has emerged as a promising framework for novel view synthesis, boasting rapid rendering speed with high fidelity. However, the substantial Gaussians and their associated attributes necessitate effective compression techniques. Nevertheless, the sparse and unorganized nature of the point cloud of Gaussians (or anchors in our paper) presents challenges for compression. To address this, we make use of the relations between the unorganized anchors and the structured hash grid, leveraging their mutual information for context modeling, and propose a Hash-grid Assisted Context (HAC) framework for highly compact 3DGS representation. Our approach introduces a binary hash grid to establish continuous spatial consistencies, allowing us to unveil the inherent spatial relations of anchors through a carefully designed context model. To facilitate entropy coding, we utilize Gaussian distributions to accurately estimate the probability of each quantized attribute, where an adaptive quantization module is proposed to enable high-precision quantization of these attributes for improved fidelity restoration. Additionally, we incorporate an adaptive masking strategy to eliminate invalid Gaussians and anchors. Importantly, our work is the pioneer to explore context-based compression for 3DGS representation, resulting in a remarkable size reduction of over 75× compared to vanilla 3DGS, while simultaneously improving fidelity, and achieving over 11× size reduction over SOTA 3DGS compression approach Scaffold-GS. Our code is available here: this https URL[[arXiv](https://arxiv.org/abs/2403.14530)] [[Project](https://yihangchen-ee.github.io/project_hac/)] [[Code](https://github.com/YihangChen-ee/HAC)]
**CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting**
*Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, Sam Kwong*
arXiv preprint, 15 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.09458)]**F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting**
*Xiangyu Sun, Joo Chan Lee, Daniel Rho, Jong Hwan Ko, Usman Ali, Eunbyung Park*
arXiv preprint, 27 May 2024
[[arXiv](https://arxiv.org/abs/2405.17083)] [[Project](https://xiangyu1sun.github.io/Factorize-3DGS/)] [[Code](https://github.com/Xiangyu1Sun/Factorize-3DGS)]**LP-3DGS: Learning to Prune 3D Gaussian Splatting**
*Zhaoliang Zhang, Tianchen Song, Yongjae Lee, Li Yang, Cheng Peng, Rama Chellappa, Deliang Fan*
arXiv preprint, 29 May 2024
[[arXiv](https://arxiv.org/abs/2405.18784)]**ContextGS: Compact 3D Gaussian Splatting with Anchor Level Context Model**
*Yufei Wang, Zhihao Li, Lanqing Guo, Wenhan Yang, Alex C. Kot, Bihan Wen*
arXiv preprint, 31 May 2024
[[arXiv](https://arxiv.org/abs/2405.20721)]**Gaussian-Forest: Hierarchical-Hybrid 3D Gaussian Splatting for Compressed Scene Modeling**
*Fengyi Zhang, Tianjun Zhang, Lin Zhang, Helen Huang, Yadan Luo*
arXiv preprint, 13 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.08759)]:fire:**Reducing the Memory Footprint of 3D Gaussian Splatting**
*Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, George Drettakis*
arXiv preprint, 24 Jun 2024Abstract
3D Gaussian splatting provides excellent visual quality for novel view synthesis, with fast training and real-time rendering; unfortunately, the memory requirements of this method for storing and transmission are unreasonably high. We first analyze the reasons for this, identifying three main areas where storage can be reduced: the number of 3D Gaussian primitives used to represent a scene, the number of coefficients for the spherical harmonics used to represent directional radiance, and the precision required to store Gaussian primitive attributes. We present a solution to each of these issues. First, we propose an efficient, resolution-aware primitive pruning approach, reducing the primitive count by half. Second, we introduce an adaptive adjustment method to choose the number of coefficients used to represent directional radiance for each Gaussian primitive, and finally a codebook-based quantization method, together with a half-float representation for further memory reduction. Taken together, these three components result in a 27 reduction in overall size on disk on the standard datasets we tested, along with a 1.7 speedup in rendering speed. We demonstrate our method on standard datasets and show how our solution results in significantly reduced download times when using the method on a mobile device.[[arXiv](https://arxiv.org/abs/2406.17074)] [[Project](https://repo-sam.inria.fr/fungraph/reduced_3dgs/)]
**Lightweight Predictive 3D Gaussian Splats**
*Junli Cao, Vidit Goel, Chaoyang Wang, Anil Kag, Ju Hu, Sergei Korolev, Chenfanfu Jiang, Sergey Tulyakov, Jian Ren*
arXiv preprint, 27 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.19434)] [[Project](https://plumpuddings.github.io/LPGS/)]**Trimming the Fat: Efficient Compression of 3D Gaussian Splats through Pruning**
*Muhammad Salman Ali, Maryam Qamar, Sung-Ho Bae, Enzo Tartaglione*
arXiv preprint, 26 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.18214)]**A Benchmark for Gaussian Splatting Compression and Quality Assessment Study**
*Qi Yang, Kaifa Yang, Yuke Xing, Yiling Xu, Zhu Li*
arXiv preprint, 19 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.14197)] [[Code](https://github.com/Qi-Yangsjtu/GGSC)]**Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields**
*Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, Eunbyung Park*
arXiv preprint, 7 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.03822)]**MesonGS: Post-training Compression of 3D Gaussians via Efficient Attribute Transformation**
*Shuzhao Xie, Weixiang Zhang, Chen Tang, Yunpeng Bai, Rongwei Lu, Shijia Ge, Zhi Wang*
ECCV 2024, 15 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.09756)]**Fast Feedforward 3D Gaussian Splatting Compression**
*Yihang Chen, Qianyi Wu, Mengyao Li, Weiyao Lin, Mehrtash Harandi, Jianfei Cai*
arXiv preprint, 10 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.08017)] [[Project](https://yihangchen-ee.github.io/project_fcgs/)] [[Code](https://github.com/YihangChen-ee/FCGS)]**ELMGS: Enhancing memory and computation scaLability through coMpression for 3D Gaussian Splatting**
*Muhammad Salman Ali, Sung-Ho Bae, Enzo Tartaglione*
arXiv preprint, 30 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.23213)]**A Hierarchical Compression Technique for 3D Gaussian Splatting Compression**
*He Huang, Wenjie Huang, Qi Yang, Yiling Xu, Zhu li*
arXiv preprint, 11 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.06976)]**HEMGS: A Hybrid Entropy Model for 3D Gaussian Splatting Data Compression**
*Lei Liu, Zhenghao Chen, Dong Xu*
27 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.18473)]**Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes**
*Saqib Javed, Ahmad Jarrar Khan, Corentin Dumery, Chen Zhao, Mathieu Salzmann*
7 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.05700)]## 3DGS Streaming
**3DGStream: On-the-Fly Training of 3D Gaussians for Efficient Streaming of Photo-Realistic Free-Viewpoint Videos**
*Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, Wei Xing*
CVPR 2024, 3 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.01444)] [[Project](https://sjojok.top/3dgstream/)] [[Code](https://github.com/SJoJoK/3DGStream)]**HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression**
*Yihang Chen, Qianyi Wu, Jianfei Cai, Mehrtash Harandi, Weiyao Lin*
arXiv preprint, 12 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.14530)] [[Project](https://yihangchen-ee.github.io/project_hac/)] [[Code](https://yihangchen-ee.github.io/project_hac/)]**LapisGS: Layered Progressive 3D Gaussian Splatting for Adaptive Streaming**
*Yuang Shi, Simone Gasparini, Géraldine Morin, Wei Tsang Ooi*
arXiv preprint, 27 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.14823)]**PRoGS: Progressive Rendering of Gaussian Splats**
*Brent Zoomers, Maarten Wijnants, Ivan Molenaers, Joni Vanherck, Jeroen Put, Lode Jorissen, Nick Michiels*
arXiv preprint, 3 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.01761)]**SwinGS: Sliding Window Gaussian Splatting for Volumetric Video Streaming with Arbitrary Length**
*Bangya Liu, Suman Banerjee*
[[arXiv](https://arxiv.org/abs/2409.07759)]**QUEEN: QUantized Efficient ENcoding of Dynamic Gaussians for Streaming Free-viewpoint Videos**
*Sharath Girish, Tianye Li, Amrita Mazumdar, Abhinav Shrivastava, David Luebke, Shalini De Mello*
NeurIPS 2024, 5 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.04469)] [[Project](https://research.nvidia.com/labs/amri/projects/queen/)]## 3DGS Based Relighting
**Subsurface Scattering for 3D Gaussian Splatting**
*Jan-Niklas Dihlmann, Arjun Majumdar, Andreas Engelhardt, Raphael Braun, Hendrik P.A. Lensch*
arXiv preprint, 22 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.12282)] [[Project](https://sss.jdihlmann.com/)] [[Code](https://github.com/cgtuebingen/SSS-GS)]## 3DGS Robotics
### 3DGS Robotics Surveys
**3D Gaussian Splatting in Robotics: A Survey**
*Siting Zhu, Guangming Wang, Dezhi Kong, Hesheng Wang*
arXiv preprint, 16 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.12262)]**Neural Fields in Robotics: A Survey**
*Muhammad Zubair Irshad, Mauro Comi, Yen-Chen Lin, Nick Heppert, Abhinav Valada, Rares Ambrus, Zsolt Kira, Jonathan Tremblay*
arXiv preprint, 26 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.20220)] [[Project](https://robonerf.github.io/survey/index.html)]### 3DGS Robotics Progresses
**Splat-Nav: Safe Real-Time Robot Navigation in Gaussian Splatting Maps**
*Timothy Chen, Ola Shorinwa, Weijia Zeng, Joseph Bruno, Philip Dames, Mac Schwager*
arXiv preprint, 5 Mar 2023
[[arXiv](https://arxiv.org/abs/2403.02751)]**ManiGaussian: Dynamic Gaussian Splatting for Multi-task Robotic Manipulation**
*Guanxing Lu, Shiyi Zhang, Ziwei Wang, Changliu Liu, Jiwen Lu, Yansong Tang*
arXiv preprint, 13 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.08321)]**Splat-MOVER: Multi-Stage, Open-Vocabulary Robotic Manipulation via Editable Gaussian Splatting**
*Ola Shorinwa, Johnathan Tucker, Aliyah Smith, Aiden Swann, Timothy Chen, Roya Firoozi, Monroe Kennedy III, Mac Schwager*
arXiv preprint, 7 Mar 2024
[[arXiv](https://arxiv.org/abs/2405.04378)]**Query-based Semantic Gaussian Field for Scene Representation in Reinforcement Learning**
*Jiaxu Wang, Ziyi Zhang, Qiang Zhang, Jia Li, Jingkai Sun, Mingyuan Sun, Junhao He, Renjing Xu*
arXiv preprint, 4 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.02370)]**Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks**
*Alex Quach, Makram Chahine, Alexander Amini, Ramin Hasani, Daniela Rus*
arXiv preprint, 21 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.15149)]**Robo-GS: A Physics Consistent Spatial-Temporal Model for Robotic Arm with Hybrid Representation**
*Haozhe Lou, Yurong Liu, Yike Pan, Yiran Geng, Jianteng Chen, Wenlong Ma, Chenglong Li, Lin Wang, Hengzhen Feng, Lu Shi, Liyi Luo, Yongliang Shi*
arXiv preprint, 27 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.14873)] [[Project](https://robostudioapp.com/)] [[Video](https://youtu.be/Aq2-2EW6JBk)]**GaussianPU: A Hybrid 2D-3D Upsampling Framework for Enhancing Color Point Clouds via 3D Gaussian Splatting**
*Zixuan Guo, Yifan Xie, Weijing Xie, Peng Huang, Fei Ma, Fei Richard Yu*
arXiv preprint, 3 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.01581)]**GraspSplats: Efficient Manipulation with 3D Feature Splatting**
*Mazeyu Ji, Ri-Zhao Qiu, Xueyan Zou, Xiaolong Wang*
arXiv preprint, 3 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.02084)] [[Project](https://graspsplats.github.io/)] [[Video](https://www.youtube.com/watch?v=LkTe2jjsLDA)] [[Code](https://github.com/jimazeyu/GraspSplats)]**SplatSim: Zero-Shot Sim2Real Transfer of RGB Manipulation Policies Using Gaussian Splatting**
*Mohammad Nomaan Qureshi, Sparsh Garg, Francisco Yandun, David Held, George Kantor, Abhishesh Silwal*
arXiv preprint, 16 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.10161)]**BEINGS: Bayesian Embodied Image-goal Navigation with Gaussian Splatting**
*Wugang Meng, Tianfu Wu, Huan Yin, Fumin Zhang*
arXiv preprint, 16 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.10216)]**SAFER-Splat: A Control Barrier Function for Safe Navigation with Online Gaussian Splatting Maps**
*Timothy Chen, Aiden Swann, Javier Yu, Ola Shorinwa, Riku Murai, Monroe Kennedy III, Mac Schwager*
arXiv preprint, 15 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.09868)] [[Project](https://chengine.github.io/safer-splat/)]**RT-GuIDE: Real-Time Gaussian splatting for Information-Driven Exploration**
*Yuezhan Tao, Dexter Ong, Varun Murali, Igor Spasojevic, Pratik Chaudhari, Vijay Kumar*
arXiv preprint, 26 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.18122)] [[Project](https://tyuezhan.github.io/RT_GuIDE/)] [[Video](https://www.youtube.com/watch?v=SzzXLXxzc7s)]**Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot**
*Justin Yu, Kush Hari, Kishore Srinivas, Karim El-Refai, Adam Rashid, Chung Min Kim, Justin Kerr, Richard Cheng, Muhammad Zubair Irshad, Ashwin Balakrishna, Thomas Kollar, Ken Goldberg*
arXiv preprint, 26 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.18108)]**HGS-Planner: Hierarchical Planning Framework for Active Scene Reconstruction Using 3D Gaussian Splatting**
*Zijun Xu, Rui Jin, Ke Wu, Yi Zhao, Zhiwei Zhang, Jieru Zhao, Zhongxue Gan, Wenchao Ding*
arXiv preprint, 26 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.17624)]**Let's Make a Splan: Risk-Aware Trajectory Optimization in a Normalized Gaussian Splat**
*Jonathan Michaux, Seth Isaacson, Challen Enninful Adu, Adam Li, Rahul Kashyap Swayampakula, Parker Ewen, Sean Rice, Katherine A. Skinner, Ram Vasudevan*
arXiv preprint, 26 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.16915)]**RL-GSBridge: 3D Gaussian Splatting Based Real2Sim2Real Method for Robotic Manipulation Learning**
*Yuxuan Wu, Lei Pan, Wenhua Wu, Guangming Wang, Yanzi Miao, Hesheng Wang*
arXiv preprint, 30 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.20291)]**SplaTraj: Camera Trajectory Generation with Semantic Gaussian Splatting**
*Xinyi Liu, Tianyi Zhang, Matthew Johnson-Roberson, Weiming Zhi*
arXiv preprint, 8 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.06014)]**Next Best Sense: Guiding Vision and Touch with FisherRF for 3D Gaussian Splatting**
*Matthew Strong, Boshu Lei, Aiden Swann, Wen Jiang, Kostas Daniilidis, Monroe Kennedy III*
arXiv preprint, 7 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.04680)] [[Project](https://arm.stanford.edu/next-best-sense/)] [[Video](https://www.youtube.com/watch?v=NHgb_16-Plg)] [[Code](https://github.com/armlabstanford/NextBestSense)]**Mode-GS: Monocular Depth Guided Anchored 3D Gaussian Splatting for Robust Ground-View Scene Rendering**
*Yonghan Lee, Jaehoon Choi, Dongki Jung, Jaeseong Yun, Soohyun Ryu, Dinesh Manocha, Suyong Yeon*
arXiv preprint, 6 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.04646)]**PhotoReg: Photometrically Registering 3D Gaussian Splatting Models**
*Ziwen Yuan, Tianyi Zhang, Matthew Johnson-Roberson, Weiming Zhi*
arXiv preprint, 7 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.05044)] [[Project](https://ziweny11.github.io/photoreg/)] [[Video](https://www.youtube.com/watch?v=BmBtd8aFrV0&t=4s)] [[Code](https://github.com/ziweny11/PhotoRegCodes)]**L-VITeX: Light-weight Visual Intuition for Terrain Exploration**
*Antar Mazumder, Zarin Anjum Madhiha*
arXiv preprint, 10 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.07872)]**Gaussian Splatting Visual MPC for Granular Media Manipulation**
*Wei-Cheng Tseng, Ellina Zhang, Krishna Murthy Jatavallabhula, Florian Shkurti*
arXiv preprint, 13 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.09740)] [[Project](https://weichengtseng.github.io/gs-granular-mani/)]**Differentiable Robot Rendering**
*Ruoshi Liu, Alper Canberk, Shuran Song, Carl Vondrick*
arXiv preprint, 17 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.13851)] [[Project](https://drrobot.cs.columbia.edu/)] [[Video](https://drrobot.cs.columbia.edu/assets/videos/video.mp4)] [[Code](https://github.com/cvlab-columbia/drrobot)]**MSGField: A Unified Scene Representation Integrating Motion, Semantics, and Geometry for Robotic Manipulation**
*Yu Sheng, Runfeng Lin, Lidian Wang, Quecheng Qiu, YanYong Zhang, Yu Zhang, Bei Hua, Jianmin Ji*
arXiv preprint, 21 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.15730)] [[Project](https://shengyu724.github.io/MSGField.github.io/)] [[Code](https://github.com/ShengYu724/MSGField)]**Dynamic 3D Gaussian Tracking for Graph-Based Neural Dynamics Modeling**
*Mingtong Zhang, Kaifeng Zhang, Yunzhu Li*
arXiv preprint, 24 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.18912)] [[Project](https://gs-dynamics.github.io/)] [[Code](https://github.com/robo-alex/gs-dynamics)]**E-3DGS: Gaussian Splatting with Exposure and Motion Events**
*Xiaoting Yin, Hao Shi, Yuhan Bao, Zhenshan Bing, Yiyi Liao, Kailun Yang, Kaiwei Wang*
arXiv preprint, 22 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.16995)] [[Code](https://github.com/MasterHow/E-3DGS)]**ActiveSplat: High-Fidelity Scene Reconstruction through Active Gaussian Splatting**
*Yuetao Li, Zijia Kuang, Ting Li, Guyue Zhou, Shaohui Zhang, Zike Yan*
arXiv preprint, 29 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.21955)] [[Project](https://li-yuetao.github.io/ActiveSplat/)] [[Video](https://youtu.be/444RW0t7FBs)]**Get a Grip: Multi-Finger Grasp Evaluation at Scale Enables Robust Sim-to-Real Transfer**
*Tyler Ga Wei Lum, Albert H. Li, Preston Culbertson, Krishnan Srinivasan, Aaron D. Ames, Mac Schwager, Jeannette Bohg*
arXiv preprint, 31 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.23701)] [[Project](https://sites.google.com/view/get-a-grip-dataset/)] [[Video](https://www.youtube.com/watch?v=leN322X3g6E)]**3DGS-CD: 3D Gaussian Splatting-based Change Detection for Physical Object Rearrangement**
*Ziqi Lu, Jianbo Ye, John Leonard*
arXiv preprint, 6 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.03706)] [[Code](https://github.com/520xyxyzq/3DGS-CD)]**Object and Contact Point Tracking in Demonstrations Using 3D Gaussian Splatting**
*Michael Büttner, Jonathan Francis, Helge Rhodin, Andrew Melnik*
CoRL 2024, 5 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.03555)]**Modeling Uncertainty in 3D Gaussian Splatting through Continuous Semantic Splatting**
*Joey Wilson, Marcelino Almeida, Min Sun, Sachit Mahajan, Maani Ghaffari, Parker Ewen, Omid Ghasemalizadeh, Cheng-Hao Kuo, Arnie Sen*
arXiv preprint, 4 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.02547)]**Through the Curved Cover: Synthesizing Cover Aberrated Scenes with Refractive Field**
*Liuyue Xie, Jiancong Guo, Laszlo A. Jeni, Zhiheng Jia, Mingyang Li, Yunwen Zhou, Chao Guo*
WACV 2025, 10 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.06365)]**SplatR : Experience Goal Visual Rearrangement with 3D Gaussian Splatting and Dense Feature Matching**
*Arjun P S, Andrew Melnik, Gora Chand Nandi*
arXiv preprint, 21 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.14322)]**RoboGSim: A Real2Sim2Real Robotic Gaussian Splatting Simulator**
*Xinhai Li, Jialin Li, Ziheng Zhang, Rui Zhang, Fan Jia, Tiancai Wang, Haoqiang Fan, Kuo-Kun Tseng, Ruiping Wang*
18 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.11839)] [[Project](https://robogsim.github.io/)]**Multi-robot autonomous 3D reconstruction using Gaussian splatting with Semantic guidance**
*Jing Zeng, Qi Ye, Tianle Liu, Yang Xu, Jin Li, Jinming Xu, Liang Li, Jiming Chen*
3 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.02249)]**SparseGrasp: Robotic Grasping via 3D Semantic Gaussian Splatting from Sparse Multi-View RGB Images**
*Junqiu Yu, Xinlin Ren, Yongchong Gu, Haitao Lin, Tianyu Wang, Yi Zhu, Hang Xu, Yu-Gang Jiang, Xiangyang Xue, Yanwei Fu*
3 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.02140)]**ActiveGS: Active Scene Reconstruction using Gaussian Splatting**
*Liren Jin, Xingguang Zhong, Yue Pan, Jens Behley, Cyrill Stachniss, Marija Popović*
23 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.17769)]**Dream to Manipulate: Compositional World Models Empowering Robot Imitation Learning with Imagination**
*Leonardo Barcellona, Andrii Zadaianchuk, Davide Allegro, Samuele Papa, Stefano Ghidoni, Efstratios Gavves*
19 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.14957)] [[Project](https://leobarcellona.github.io/DreamToManipulate/)]## 3DGS Avatar Generation
### 3DGS Avatar Generation Survey
**A Survey on 3D Human Avatar Modeling -- From Reconstruction to Generation**
*Ruihe Wang, Yukang Cao, Kai Han, Kwan-Yee K. Wong*
arXiv preprint, 6 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.04253)]### 3DGS Avatar Generation Progresses
**Animatable 3D Gaussian: Fast and High-Quality Reconstruction of Multiple Human Avatars**
*Yang Liu, Xiang Huang, Minghan Qin, Qinwei Lin, Haoqian Wang*
arXiv preprint, 27 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.16482)] [[Project](https://jimmyyliu.github.io/Animatable-3D-Gaussian/)]**HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting**
*Xian Liu, Xiaohang Zhan, Jiaxiang Tang, Ying Shan, Gang Zeng, Dahua Lin, Xihui Liu, Ziwei Liu*
arXiv preprint, 28 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.17061)] [[Project](https://alvinliu0.github.io/projects/HumanGaussian)]**HUGS: Human Gaussian Splats**
*Muhammed Kocabas, Jen-Hao Rick Chang, James Gabriel, Oncel Tuzel, Anurag Ranjan*
arXiv preprint, 29 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.17910)]**Gaussian Shell Maps for Efficient 3D Human Generation**
*Rameen Abdal, Wang Yifan, Zifan Shi, Yinghao Xu, Ryan Po, Zhengfei Kuang, Qifeng Chen, Dit-Yan Yeung, Gordon Wetzstein*
arXiv preprint, 29 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.17857)]**GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis**
*Shunyuan Zheng, Boyao Zhou, Ruizhi Shao, Boning Liu, Shengping Zhang, Liqiang Nie, Yebin Liu*
arXiv preprint, 4 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.02155)] [[Project](https://shunyuanzheng.github.io/)]**GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians**
*Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao Zhou, Boning Liu, Shengping Zhang, Liqiang Nie*
arXiv preprint, 4 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.02134)] [[Project](https://huliangxiao.github.io/GaussianAvatar)]**GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians**
*Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide Davoli, Simon Giebenhain, Matthias Nießner*
arXiv preprint, 4 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.02069)] [[Project](https://shenhanqian.github.io/gaussian-avatars)]**GaussianHead: Impressive 3D Gaussian-based Head Avatars with Dynamic Hybrid Neural Field**
*Jie Wang, Xianyan Li, Jiucheng Xie, Feng Xu, Hao Gao*
arXiv preprint, 4 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.01632)]**GauHuman: Articulated Gaussian Splatting from Monocular Human Videos**
*Shoukang Hu, Ziwei Liu*
CVPR 2024, 5 Dec, 2023
[[arXiv](https://arxiv.org/abs/2312.02973)] [[Project](https://skhu101.github.io/GauHuman/)] [[Code](https://github.com/skhu101/GauHuman)]**HeadGaS: Real-Time Animatable Head Avatars via 3D Gaussian Splatting**
*Helisa Dhamo, Yinyu Nie, Arthur Moreau, Jifei Song, Richard Shaw, Yiren Zhou, Eduardo Pérez-Pellitero*
arXiv preprint, 5 Dec, 2023
[[arXiv](https://arxiv.org/abs/2312.02902)]**Relightable Gaussian Codec Avatars**
*Shunsuke Saito, Gabriel Schwartz, Tomas Simon, Junxuan Li, Giljoo Nam*
CVPR 2024, 5 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.03704)] [[Project](https://shunsukesaito.github.io/rgca/)]**HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian Splatting**
*Yuheng Jiang, Zhehao Shen, Penghao Wang, Zhuo Su, Yu Hong, Yingliang Zhang, Jingyi Yu, Lan Xu*
arXiv preprint, 6 Dec, 2023
[[arXiv](https://arxiv.org/abs/2312.03461)]**MonoGaussianAvatar: Monocular Gaussian Point-based Head Avatar**
*Yufan Chen, Lizhen Wang, Qijing Li, Hongjiang Xiao, Shengping Zhang, Hongxun Yao, Yebin Liu*
SIGGRAPH 2024, 7 Dec, 2023
[[arXiv](https://arxiv.org/abs/2312.04558)] [[Project](https://yufan1012.github.io/MonoGaussianAvatar)] [[Code](https://github.com/yufan1012/MonoGaussianAvatar)] [[Video](https://www.youtube.com/embed/3UvBkyPc-oc)]**ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering**
*Haokai Pang, Heming Zhu, Adam Kortylewski, Christian Theobalt, Marc Habermann*
arXiv preprint, 10 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.05941)] [[Project](https://vcai.mpi-inf.mpg.de/projects/ash/)] [[Code](https://github.com/kv2000/ASH)]**3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting**
*Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, Siyu Tang*
CVPR 2024, 14 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.09228)] [[Project](https://neuralbodies.github.io/3DGS-Avatar/)] [[Code](https://github.com/mikeqzy/3dgs-avatar-release)]**GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning**
*Ye Yuan, Xueting Li, Yangyi Huang, Shalini De Mello, Koki Nagano, Jan Kautz, Umar Iqbal*
CVPR 2024, 18 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.11461)] [[Project](https://nvlabs.github.io/GAvatar/)] [[Video](https://www.youtube.com/watch?v=PbCF1HzrKrs&feature=youtu.be)]**3D Points Splatting for Real-Time Dynamic Hand Reconstruction**
*Zheheng Jiang, Hossein Rahmani, Sue Black, Bryan M. Williams*
arXiv preprint, 21 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.13770)]**Human101: Training 100+FPS Human Gaussians in 100s from 1 View**
*Mingwei Li, Jiachen Tao, Zongxin Yang, Yi Yang*
arXiv preprint, 23 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.15258)] [[Code](https://github.com/longxiang-ai/Human101)]**Gaussian Shadow Casting for Neural Characters**
*Luis Bolanos, Shih-Yang Su, Helge Rhodin*
arXiv preprint, 11 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.06116)]**GPAvatar: Generalizable and Precise Head Avatar from Image(s)**
*Xuangeng Chu, Yu Li, Ailing Zeng, Tianyu Yang, Lijian Lin, Yunfei Liu, Tatsuya Harada*
ICLR 2024, 18 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.10215)] [[Code](https://github.com/xg-chu/GPAvatar)]**PSAvatar: A Point-based Morphable Shape Model for Real-Time Head Avatar Creation with 3D Gaussian Splatting**
*Zhongyuan Zhao, Zhenyu Bao, Qing Li, Guoping Qiu, Kanglin Liu*
arXiv preprint, 23 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.12900)]**ImplicitDeepfake: Plausible Face-Swapping through Implicit Deepfake Generation using NeRF and Gaussian Splatting**
*Georgii Stanishevskii, Jakub Steczkiewicz, Tomasz Szczepanik, Sławomir Tadeja, Jacek Tabor, Przemysław Spurek*
arXiv preprint, 9 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.06390)]**GaussianHair: Hair Modeling and Rendering with Light-aware Gaussians**
*Haimin Luo, Min Ouyang, Zijun Zhao, Suyi Jiang, Longwen Zhang, Qixuan Zhang, Wei Yang, Lan Xu, Jingyi Yu*
arXiv preprint, 16 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.10483)]**HeadStudio: Text to Animatable Head Avatars with 3D Gaussian Splatting**
*Zhenglin Zhou, Fan Ma, Hehe Fan, Yi Yang*
arXiv preprint, 9 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.06149)]**Rig3DGS: Creating Controllable Portraits from Casual Monocular Videos**
*Alfredo Rivero, ShahRukh Athar, Zhixin Shu, Dimitris Samaras*
arXiv preprint, 6 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.03723)] [[Project](https://shahrukhathar.github.io/2024/02/05/Rig3DGS.html)]**SplatFace: Gaussian Splat Face Reconstruction Leveraging an Optimizable Surface**
*Jiahao Luo, Jing Liu, James Davis*
arXiv preprint, 27 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.18784)]**HAHA: Highly Articulated Gaussian Human Avatars with Textured Mesh Prior**
*David Svitov, Pietro Morerio, Lourdes Agapito, Alessio Del Bue*
arXiv preprint, 1 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.01053)]**GoMAvatar: Efficient Animatable Human Modeling from Monocular Video Using Gaussians-on-Mesh**
*Jing Wen, Xiaoming Zhao, Zhongzheng Ren, Alexander G. Schwing, Shenlong Wang*
CVPR 2024, 11 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.07991)] [[Project](https://wenj.github.io/GoMAvatar/)] [[Code](https://github.com/wenj/GoMAvatar)]**OccGaussian: 3D Gaussian Splatting for Occluded Human Rendering**
*Jingrui Ye, Zongkai Zhang, Yujiao Jiang, Qingmin Liao, Wenming Yang, Zongqing Lu*
arXiv preprint, 12 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.08449)]**GaussianTalker: Speaker-specific Talking Head Synthesis via 3D Gaussian Splatting**
*Hongyun Yu, Zhan Qu, Qihang Yu, Jianchuan Chen, Zhonghua Jiang, Zhiwen Chen, Shengyu Zhang, Jimin Xu, Fei Wu, Chengfei Lv, Gang Yu*
arXiv preprint, 22 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.14037)] [[Project](https://yuhongyun777.github.io/GaussianTalker/)] [[Video](https://youtu.be/TYS-WlAchvM)]**3D Gaussian Blendshapes for Head Avatar Animation**
*Shengjie Ma, Yanlin Weng, Tianjia Shao, Kun Zhou*
SIGGRAPH 2024, 30 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.19398)]**GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis with Audio-Driven 3D Gaussian Splatting**
*Kyusun Cho, Joungbin Lee, Heeji Yoon, Yeobin Hong, Jaehoon Ko, Sangjun Ahn, Seungryong Kim*
arXiv preprint, 24 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.16012)] [[Code](https://github.com/KU-CVLAB/GaussianTalker/)]**GSTalker: Real-time Audio-Driven Talking Face Generation via Deformable Gaussian Splatting**
*Bo Chen, Shoukang Hu, Qi Chen, Chenpeng Du, Ran Yi, Yanmin Qian, Xie Chen*
arXiv preprint, 29 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.19040)]**MeGA: Hybrid Mesh-Gaussian Head Avatar for High-Fidelity Rendering and Head Editing**
*Cong Wang, Di Kang, He-Yi Sun, Shen-Han Qian, Zi-Xuan Wang, Linchao Bao, Song-Hai Zhang*
arXiv preprint, 29 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.19026)] [[Project](https://conallwang.github.io/MeGA_Pages/)]**Tele-Aloha: A Low-budget and High-authenticity Telepresence System Using Sparse RGB Cameras**
*Hanzhang Tu, Ruizhi Shao, Xue Dong, Shunyuan Zheng, Hao Zhang, Lili Chen, Meili Wang, Wenyu Li, Siyan Ma, Shengping Zhang, Boyao Zhou, Yebin Liu
SIGGRAPH 2024, 23 May 2024
[[arXiv](https://arxiv.org/abs/2405.14866)] [[Project](http://118.178.32.38/c/Tele-Aloha/)] [[Video](http://118.178.32.38/c/Tele-Aloha/#vid)]**LAGA: Layered 3D Avatar Generation and Customization via Gaussian Splatting**
*Jia Gong, Shenyu Ji, Lin Geng Foo, Kang Chen, Hossein Rahmani, Jun Liu*
arXiv preprint, 21 May 2024
[[arXiv](https://arxiv.org/abs/2405.12663)]**Gaussian Control with Hierarchical Semantic Graphs in 3D Human Recovery**
*Hongsheng Wang, Weiyue Zhang, Sihao Liu, Xinrui Zhou, Shengyu Zhang, Fei Wu, Feng Lin*
arXiv preprint, 21 May 2024
[[arXiv](https://arxiv.org/abs/2405.12477)] [[Project](https://wanghongsheng01.github.io/HUGS/)] [[Code](https://github.com/3DHumanRehab/SemanticGraph-Gaussian)]**Gaussian Head & Shoulders: High Fidelity Neural Upper Body Avatars with Anchor Gaussian Guided Texture Warping**
*Tianhao Wu, Jing Yang, Zhilin Guo, Jingyi Wan, Fangcheng Zhong, Cengiz Oztireli*
arXiv preprint, 20 May 2024
[[arXiv](https://arxiv.org/abs/2405.12069)] [[Project](https://gaussian-head-shoulders.netlify.app)]**FAGhead: Fully Animate Gaussian Head from Monocular Videos**
*Yixin Xuan, Xinyang Li, Gongxin Yao, Shiwei Zhou, Donghui Sun, Xiaoxin Chen, Yu Pan*
arXiv preprint, 27 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.19070)]**Expressive Gaussian Human Avatars from Monocular RGB Video**
*Hezhen Hu, Zhiwen Fan, Tianhao Wu, Yihan Xi, Seoyoung Lee, Georgios Pavlakos, Zhangyang Wang*
arXiv preprint, 3 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.03204)] [[Project](https://evahuman.github.io/)]**MeshAvatar: Learning High-quality Triangular Human Avatars from Multi-view Videos**
*Yushuo Chen, Zerong Zheng, Zhe Li, Chao Xu, Yebin Liu*
arXiv preprint, 11 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.08414)] [[Project](https://shad0wta9.github.io/meshavatar-page/)] [[Code](https://github.com/shad0wta9/meshavatar)]**Interactive Rendering of Relightable and Animatable Gaussian Avatars**
*Youyi Zhan, Tianjia Shao, He Wang, Yin Yang, Kun Zhou*
arXiv preprint, 15 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.10707)]**Generalizable Human Gaussians for Sparse View Synthesis**
*Youngjoong Kwon, Baole Fang, Yixing Lu, Haoye Dong, Cheng Zhang, Francisco Vicente Carrasco, Albert Mosella-Montoro, Jianjin Xu, Shingo Takagi, Daeil Kim, Aayush Prakash, Fernando De la Torre*
arXiv preprint, 17 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.12777)]**iHuman: Instant Animatable Digital Humans From Monocular Videos**
*Pramish Paudel, Anubhav Khanal, Ajad Chhatkuli, Danda Pani Paudel, Jyoti Tandukar*
ECCV 2024, 15 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.11174)]**HeadGAP: Few-shot 3D Head Avatar via Generalizable Gaussian Priors**
*Xiaozheng Zheng, Chao Wen, Zhaohu Li, Weiyi Zhang, Zhuo Su, Xu Chang, Yang Zhao, Zheng Lv, Xiaoyuan Zhang, Yongjie Zhang, Guidong Wang, Lan Xu*
arXiv preprint, 12 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.06019)] [[Project](https://headgap.github.io/)]**DEGAS: Detailed Expressions on Full-Body Gaussian Avatars**
*Zhijing Shao, Duotun Wang, Qing-Yao Tian, Yao-Dong Yang, Hengyu Meng, Zeyu Cai, Bo Dong, Yu Zhang, Kang Zhang, Zeyu Wang*
arXiv preprint, 20 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.10588)]**SG-GS: Photo-realistic Animatable Human Avatars with Semantically-Guided Gaussian Splatting**
*Haoyu Zhao, Chen Yang, Hao Wang, Xingyue Zhao, Wei Shen*
arXiv preprint, 19 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.09665)]**CHASE: 3D-Consistent Human Avatars with Sparse Inputs via Gaussian Splatting and Contrastive Learning**
*Haoyu Zhao, Hao Wang, Chen Yang, Wei Shen*
arXiv preprint, 19 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.09663)]**Human-VDM: Learning Single-Image 3D Human Gaussian Splatting from Video Diffusion Models**
*Zhibin Liu, Haoye Dong, Aviral Chharia, Hefeng Wu*
arXiv preprint, 4 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.02851)] [[Project](https://human-vdm.github.io/Human-VDM/)] [[Code](https://github.com/Human-VDM/Human-VDM)]**Instant Facial Gaussians Translator for Relightable and Interactable Facial Rendering**
*Dafei Qin, Hongyang Lin, Qixuan Zhang, Kaichun Qiao, Longwen Zhang, Zijun Zhao, Jun Saito, Jingyi Yu, Lan Xu, Taku Komura*
arXiv preprint, 11 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.07441)] [[Project](https://dafei-qin.github.io/TransGS.github.io/)] [[Video](https://www.youtube.com/watch?v=MQTm3WTQ3KI)]**GST: Precise 3D Human Body from a Single Image with Gaussian Splatting Transformers**
*Lorenza Prospero, Abdullah Hamdi, Joao F. Henriques, Christian Rupprecht*
arXiv preprint, 6 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.04196)] [[Project](https://abdullahamdi.com/gst/)] [[Video](https://youtu.be/nlo6VN_WXrs)] [[Code](https://github.com/prosperolo/GST)]**JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation**
*Sai Tanmay Reddy Chakkera, Aggelina Chatziagapi, Dimitris Samaras*
BMVC 2024, 18 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12156)] [[Project](https://starc52.github.io/publications/2024-07-19-JEAN/)] [[Video](https://www.youtube.com/watch?v=iTlW1HyxFDQ)]**Disco4D: Disentangled 4D Human Generation and Animation from a Single Image**
*Hui En Pang, Shuai Liu, Zhongang Cai, Lei Yang, Tianwei Zhang, Ziwei Liu*
arXiv preprint, 25 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.17280)] [[Project](https://disco-4d.github.io/)]**Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities**
*Peizhi Yan, Rabab Ward, Qiang Tang, Shan Du*
WACV 2024, 23 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.16147)]**Human Hair Reconstruction with Strand-Aligned 3D Gaussians**
*Egor Zakharov, Vanessa Sklyarova, Michael Black, Giljoo Nam, Justus Thies, Otmar Hilliges*
arXiv preprint, 23 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.14778)]**EVA-Gaussian: 3D Gaussian-based Real-time Human Novel View Synthesis under Diverse Camera Settings**
*Yingdong Hu, Zhening Liu, Jiawei Shao, Zehong Lin, Jun Zhang*
arXiv preprint, 2 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.01425)] [[Project](https://zhenliuzju.github.io/huyingdong/EVA-Gaussian)]**DifFRelight: Diffusion-Based Facial Performance Relighting**
*Mingming He, Pascal Clausen, Ahmet Levent Taşel, Li Ma, Oliver Pilarski, Wenqi Xian, Laszlo Rikker, Xueming Yu, Ryan Burgert, Ning Yu, Paul Debevec*
SIGGRAPH Asia 2024, 10 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.08188)] [[Project](https://www.eyelinestudios.com/research/diffrelight.html)]**GS-VTON: Controllable 3D Virtual Try-on with Gaussian Splatting**
*Yukang Cao, Masoud Hadi, Liang Pan, Ziwei Liu*
arXiv preprint, 7 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.05259)]**LoDAvatar: Hierarchical Embedding and Adaptive Levels of Detail with Gaussian Splatting for Enhanced Human Avatars**
*Xiaonuo Dongye, Hanzhi Guo, Le Luo, Haiyan Jiang, Yihua Bao, Zeyu Tian, Dongdong Weng*
arXiv preprint, 28 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.20789)]**HFGaussian: Learning Generalizable Gaussian Human with Integrated Human Features**
*Arnab Dey, Cheng-You Lu, Andrew I. Comport, Srinath Sridhar, Chin-Teng Lin, Jean Martinet*
arXiv preprint, 5 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.03086)]**GazeGaussian: High-Fidelity Gaze Redirection with 3D Gaussian Splatting**
*Xiaobao Wei, Peng Chen, Guangyu Li, Ming Lu, Hui Chen, Feng Tian*
20 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.12981)] [[Project](https://ucwxb.github.io/GazeGaussian/)]**Make-It-Animatable: An Efficient Framework for Authoring Animation-Ready 3D Characters**
*Zhiyang Guo, Jinxu Xiang, Kai Ma, Wengang Zhou, Houqiang Li, Ran Zhang*
27 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.18197)] [[Project](https://jasongzy.github.io/Make-It-Animatable/)] [[Video](https://www.youtube.com/watch?v=mH6L9r_28LA)] [[Code](https://github.com/jasongzy/Make-It-Animatable)]**DynamicAvatars: Accurate Dynamic Facial Avatars Reconstruction and Precise Editing with Diffusion Models**
*Yangyang Qian, Yuan Sun, Yu Guo*
24 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.15732)]**AniGS: Animatable Gaussian Avatar from a Single Image with Inconsistent Gaussian Reconstruction**
*Lingteng Qiu, Shenhao Zhu, Qi Zuo, Xiaodong Gu, Yuan Dong, Junfei Zhang, Chao Xu, Zhe Li, Weihao Yuan, Liefeng Bo, Guanying Chen, Zilong Dong*
3 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.02684)] [[Project](https://lingtengqiu.github.io/2024/AniGS/)] [[Video](https://youtu.be/e9qgMMvYMr4?si=ab-UMvFY992PpnH1-)] [[Code](https://github.com/aigc3d/AniGS)]**TimeWalker: Personalized Neural Space for Lifelong Head Avatars**
*Dongwei Pan, Yang Li, Hongsheng Li, Kwan-Yee Lin*
3 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.02421)] [[Project](https://timewalker2024.github.io/timewalker.github.io/)] [[Video](https://www.youtube.com/watch?v=x8cpOVMY_ko)]**SAGA: Surface-Aligned Gaussian Avatar**
*Ronghan Chen, Yang Cong, Jiayue Liu*
1 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.00845)] [[Project](https://gostinshell.github.io/SAGA/)]**MixedGaussianAvatar: Realistically and Geometrically Accurate Head Avatar via Mixed 2D-3D Gaussian Splatting**
*Peng Chen, Xiaobao Wei, Qingpo Wuwu, Xinyi Wang, Xingyu Xiao, Ming Lu*
6 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.04955)] [[Code](https://github.com/ChenVoid/MGA/)]**GASP: Gaussian Avatars with Synthetic Priors**
*Jack Saunders, Charlie Hewitt, Yanan Jian, Marek Kowalski, Tadas Baltrusaitis, Yiye Chen, Darren Cosker, Virginia Estellers, Nicholas Gyde, Vinay P. Namboodiri, Benjamin E Lundell*
10 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.07739)] [[Project](https://microsoft.github.io/GASP/)] [[Video](https://youtu.be/3oWB7-UJUYE)]**GAF: Gaussian Avatar Reconstruction from Monocular Videos via Multi-view Diffusion**
*Jiapeng Tang, Davide Davoli, Tobias Kirschstein, Liam Schoneveld, Matthias Niessner*
13 Dec 2024
[[arxiv](https://arxiv.org/abs/2412.10209)] [[Video](https://youtu.be/QuIYTljvhyg)] [[Project](https://tangjiapeng.github.io/projects/GAF)]**FaceLift: Single Image to 3D Head with View Generation and GS-LRM**
*Weijie Lyu, Yi Zhou, Ming-Hsuan Yang, Zhixin Shu*
23 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.17812)] [[Project](https://www.wlyu.me/FaceLift/)] [[Code](https://github.com/weijielyu/FaceLift)]**AvatarPerfect: User-Assisted 3D Gaussian Splatting Avatar Refinement with Automatic Pose Suggestion**
*Jotaro Sakamiya, I - Chao Shen, Jinsong Zhang, Mustafa Doga Dogan, Takeo Igarashi
20 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.15609)]**SqueezeMe: Efficient Gaussian Avatars for VR**
*Shunsuke Saito, Stanislav Pidhorskyi, Igor Santesteban, Forrest Iandola, Divam Gupta, Anuj Pahuja, Nemanja Bartolovic, Frank Yu, Emanuel Garbin, Tomas Simon*
19 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.15171)] [[Project](https://forresti.github.io/squeezeme/)]**GraphAvatar: Compact Head Avatars with GNN-Generated 3D Gaussians**
*Xiaobao Wei, Peng Chen, Ming Lu, Hui Chen, Feng Tian*
AAAI 2025, 18 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.13983)] [[Code](https://github.com/ucwxb/GraphAvatar)]## 3DGS Clothes/Garment
**GaussianVTON: 3D Human Virtual Try-ON via Multi-Stage Gaussian Splatting Editing with Image Prompting**
*Haodong Chen, Yongle Huang, Haojian Huang, Xiangsheng Ge, Dian Shao*
arXiv preprint, 13 May 2024
[[arXiv](https://arxiv.org/abs/2405.07472)]**MOSS: Motion-based 3D Clothed Human Synthesis from Monocular Video**
*Hongsheng Wang, Xiang Cai, Xi Sun, Jinhong Yue, Shengyu Zhang, Feng Lin, Fei Wu*
arXiv preprint, 21 May 2024
[[arXiv](https://arxiv.org/abs/2405.12806)] [[Project](https://wanghongsheng01.github.io/MOSS/)] [[Code](https://github.com/3DHumanRehab/MOSS)]**GarmentDreamer: 3DGS Guided Garment Synthesis with Diverse Geometry and Texture Details**
*Boqian Li, Xuan Li, Ying Jiang, Tianyi Xie, Feng Gao, Huamin Wang, Yin Yang, Chenfanfu Jiang*
arXiv preprint, 20 May 2024
[[arXiv](https://arxiv.org/abs/2405.12420)] [[Project](https://xuan-li.github.io/GarmentDreamerDemo/)]**NPGA: Neural Parametric Gaussian Avatars**
*Simon Giebenhain, Tobias Kirschstein, Martin Rünz, Lourdes Agapito, Matthias Nießner*
arXiv preprint, 29 May 2024
[[arXiv](https://arxiv.org/abs/2405.19331)] [[Project](https://simongiebenhain.github.io/NPGA/)] [[Video](https://www.youtube.com/watch?v=NGRxAYbIkus)]**GGHead: Fast and Generalizable 3D Gaussian Heads**
*Tobias Kirschstein, Simon Giebenhain, Jiapeng Tang, Markos Georgopoulos, Matthias Nießner*
arXiv preprint, 13 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.09377)] [[Projectt](https://tobias-kirschstein.github.io/gghead/)] [[Video](https://www.youtube.com/watch?v=1iyC74neQXc)]**Human 3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion Models**
*Yuxuan Xue, Xianghui Xie, Riccardo Marin, Gerard Pons-Moll*
arXiv preprint, 12 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.08475)] [[Project](https://yuxuan-xue.com/human-3diffusion/)] [[Code](https://github.com/YuxuanSnow/Human3Diffusion/)]**HumanSplat: Generalizable Single-Image HumanGaussianSplattingwith Structure Priors**
*Panwang Pan, Zhuo Su, Chenguo Lin, Zhen Fan, Yongjie Zhang, Zeming Li, Tingting Shen, Yadong Mu, Yebin Liu*
arXiv preprint, 18 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.12459)] [[Project](https://humansplat.github.io/)]**PICA: Physics-Integrated Clothed Avatar**
*Bo Peng, Yunfan Tao, Haoyu Zhan, Yudong Guo, Juyong Zhang*
arXiv preprint, 7 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.05324)] [[Project](https://ustc3dv.github.io/PICA/)]**Gaussian Eigen Models for Human Heads**
*Wojciech Zielonka, Timo Bolkart, Thabo Beeler, Justus Thies*
arXiv preprint, 5 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.04545)] [[Project](https://zielon.github.io/gem/)]## 3DGS Scene Editing and Animation
### 3D Scene Editing Surveys
**Editing Implicit and Explicit Representations of Radiance Fields: A Survey**
*Arthur Hubert, Gamal Elghazaly, Raphael Frank*
23 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.17628)]### 3D Scene Editing Progresses
**Animatable 3D Gaussians for High-fidelity Synthesis of Human Motions**
*Keyang Ye, Tianjia Shao, Kun Zhou*
arXiv preprint, 22 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.13404)]**GaussianEditor: Swift and Controllable 3D Editing with Gaussian Splatting**
*Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai, Lei Yang, Huaping Liu, Guosheng Lin*
arXiv preprint, 24 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.14521)] [[Project](https://buaacyw.github.io/gaussian-editor/)]**Relightable 3D Gaussian: Real-time Point Cloud Relighting with BRDF Decomposition and Ray Tracing**
*Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li Zhang, Yao Yao*
arXiv preprint, 27 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.16043)] [[Project](https://nju-3dv.github.io/projects/Relightable3DGaussian/)]**GART: Gaussian Articulated Template Models**
*Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, Kostas Daniilidis*
arXiv preprint, 27 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.16099)] [[Project](https://www.cis.upenn.edu/~leijh/projects/gart/)]**Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling**
*Zhe Li, Zerong Zheng, Lizhen Wang, Yebin Liu*
arXiv preprint, 27 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.16096)] [[Project](https://animatable-gaussians.github.io/)]**Point'n Move: Interactive Scene Object Manipulation on Gaussian Splatting Radiance Fields**
*Jiajun Huang, Hongchuan Yu*
arXiv preprint, 28 Nov, 2023
[[arXiv](https://arxiv.org/abs/2311.16737)]**TIP-Editor: An Accurate 3D Editor Following Both Text-Prompts And Image-Prompts**
*Jingyu Zhuang, Di Kang, Yan-Pei Cao, Guanbin Li, Liang Lin, Ying Shan*
SIGGRAPH 2024, 26 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.14828)]**GaMeS: Mesh-Based Adapting and Modification of Gaussian Splatting**
*Joanna Waczyńska, Piotr Borycki, Sławomir Tadeja, Jacek Tabor, Przemysław Spurek*
arXiv preprint, 2 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.01459)]**GaussCtrl: Multi-View Consistent Text-Driven 3D Gaussian Splatting Editing**
*Jing Wu, Jia-Wang Bian, Xinghui Li, Guangrun Wang, Ian Reid, Philip Torr, Victor Adrian Prisacariu*
arXiv preprint, 13 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.08733)] [[Project](https://gaussctrl.active.vision/)]**Texture-GS: Disentangling the Geometry and Texture for 3D Gaussian Splatting Editing**
*Tian-Xing Xu, Wenbo Hu, Yu-Kun Lai, Ying Shan, Song-Hai Zhang*
arXiv preprint, 15 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.10050)]**View-Consistent 3D Editing with Gaussian Splatting**
*Yuxuan Wang, Xuanyu Yi, Zike Wu, Na Zhao, Long Chen, Hanwang Zhang*
arXiv preprint, 18 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.11868)] [[Project](https://yuxuanw.me/vcedit/)]:fire:**Feature Splatting: Language-Driven Physics-Based Scene Synthesis and Editing**
*Ri-Zhao Qiu, Ge Yang, Weijia Zeng, Xiaolong Wang*
ECCV 2024, 1 Apr 2024Abstract
Scene representations using 3D Gaussian primitives have produced excellent results in modeling the appearance of static and dynamic 3D scenes. Many graphics applications, however, demand the ability to manipulate both the appearance and the physical properties of objects. We introduce Feature Splatting, an approach that unifies physics-based dynamic scene synthesis with rich semantics from vision language foundation models that are grounded by natural language. Our first contribution is a way to distill high-quality, object-centric vision-language features into 3D Gaussians, that enables semi-automatic scene decomposition using text queries. Our second contribution is a way to synthesize physics-based dynamics from an otherwise static scene using a particle-based simulator, in which material properties are assigned automatically via text queries. We ablate key techniques used in this pipeline, to illustrate the challenge and opportunities in using feature-carrying 3D Gaussians as a unified format for appearance, geometry, material properties and semantics grounded on natural language. Project website: this https URL[[arXiv](https://arxiv.org/abs/2404.01223)] [[Project](https://feature-splatting.github.io/)] [[Code](https://github.com/vuer-ai/feature_splatting)]
**GScream: Learning 3D Geometry and Feature Consistent Gaussian Splatting for Object Removal**
*Yuxin Wang, Qianyi Wu, Guofeng Zhang, Dan Xu*
arXiv preprint, 21 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.13679)] [[Project](https://w-ted.github.io/publications/gscream/)]**DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing**
*Minghao Chen, Iro Laina, Andrea Vedaldi*
arXiv preprint, 29 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.18929)] [[Project](https://silent-chen.github.io/DGE/)] [[Code](https://github.com/silent-chen/DGE)]**TIGER: Text-Instructed 3D Gaussian Retrieval and Coherent Editing**
*Teng Xu, Jiamin Chen, Peng Chen, Youjia Zhang, Junqing Yu, Wei Yang*
arXiv preprint, 23 May 2024
[[arXiv](https://arxiv.org/abs/2405.14455)]**D-MiSo: Editing Dynamic 3D Scenes using Multi-Gaussians Soup**
*Joanna Waczyńska, Piotr Borycki, Joanna Kaleta, Sławomir Tadeja, Przemysław Spurek*
arXiv preprint, 23 May 2024
[[arXiv](https://arxiv.org/abs/2405.14276)]**ICE-G: Image Conditional Editing of 3D Gaussian Splats**
*Vishnu Jaganathan, Hannah Hanyun Huang, Muhammad Zubair Irshad, Varun Jampani, Amit Raj, Zsolt Kira*
CVPR AI4CC Workshop 2024, 12 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.08488)] [[Project](https://ice-gaussian.github.io/)]**3DEgo: 3D Editing on the Go!**
*Umar Khalid, Hasan Iqbal, Azib Farooq, Jing Hua, Chen Chen*
ECCV 2024, 14 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.10102)] [[Project](https://3dego.github.io/)]**3D Gaussian Editing with A Single Image**
*Guan Luo, Tian-Xing Xu, Ying-Tian Liu, Xiao-Xiong Fan, Fang-Lue Zhang, Song-Hai Zhang*
arXiv preprint, 14 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.07540)]**LumiGauss: High-Fidelity Outdoor Relighting with 2D Gaussian Splatting**
*Joanna Kaleta, Kacper Kania, Tomasz Trzcinski, Marek Kowalski*
arXiv preprint, 6 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.04474)]**Generative Object Insertion in Gaussian Splatting with a Multi-View Diffusion Model**
*Hongliang Zhong, Can Wang, Jingbo Zhang, Jing Liao*
arXiv preprint, 25 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.16938)] [[Code](https://github.com/JiuTongBro/MultiView_Inpaint)]**GaussianBlock: Building Part-Aware Compositional and Editable 3D Scene by Primitives and Gaussians**
*Shuyi Jiang, Qihao Zhao, Hossein Rahmani, De Wen Soh, Jun Liu, Na Zhao*
arXiv preprint, 2 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.01535)]**MiraGe: Editable 2D Images using Gaussian Splatting**
*Joanna Waczyńska, Tomasz Szczepanik, Piotr Borycki, Sławomir Tadeja, Thomas Bohné, Przemysław Spurek*
arXiv preprint, 2 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.01521)]**RNG: Relightable Neural Gaussians**
*Jiahui Fan, Fujun Luan, Jian Yang, Miloš Hašan, Beibei Wang*
arXiv preprint, 29 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.19702)]**ProEdit: Simple Progression is All You Need for High-Quality 3D Scene Editing**
*Jun-Kun Chen, Yu-Xiong Wang*
NeurIPS 2024, 7 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.05006)] [[Project](https://immortalco.github.io/ProEdit/)]**Neural Surface Priors for Editable Gaussian Splatting**
*Jakub Szymkowiak, Weronika Jakubowska, Dawid Malarz, Weronika Smolak-Dyżewska, Maciej Zięba, Przemysław Musialski, Wojtek Pałubicki, Przemysław Spurek*
27 Not 2024
[[arXiv](https://arxiv.org/abs/2411.18311)] [[Code](https://github.com/WJakubowska/NeuralSurfacePriors)]**SplatFlow: Multi-View Rectified Flow Model for 3D Gaussian Splatting Synthesis**
*Hyojun Go, Byeongjun Park, Jiho Jang, Jin-Young Kim, Soonwoo Kwon, Changick Kim*
25 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.16443)] [[Project](https://gohyojun15.github.io/SplatFlow/)] [[Code](https://github.com/gohyojun15/SplatFlow/)]**Gaussian Object Carver: Object-Compositional Gaussian Splatting with surfaces completion**
*Liu Liu, Xinjie Wang, Jiaxiong Qiu, Tianwei Lin, Xiaolin Zhou, Zhizhong Su*
3 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.02075)]**CTRL-D: Controllable Dynamic 3D Scene Editing with Personalized 2D Diffusion**
*Kai He, Chin-Hsuan Wu, Igor Gilitschenski*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01792)] [[Project](https://ihe-kaii.github.io/CTRL-D/)]**Diffusion Models with Anisotropic Gaussian Splatting for Image Inpainting**
*Jacob Fein-Ashley, Benjamin Fein-Ashley*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01682)]**3DSceneEditor: Controllable 3D Scene Editing with Gaussian Splatting**
*Ziyang Yan, Lei Li, Yihua Shao, Siyu Chen, Wuzong Kai, Jenq-Neng Hwang, Hao Zhao, Fabio Remondino*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01583)]**Instant3dit: Multiview Inpainting for Fast Editing of 3D Objects**
*Amir Barda, Matheus Gadelha, Vladimir G. Kim, Noam Aigerman, Amit H. Bermano, Thibault Groueix*
30 Nov 2024
[[arXiv](https://arxiv.org/abs/2412.00518)] [[Project](https://amirbarda.github.io/Instant3dit.github.io/)] [[Code](https://github.com/amirbarda/Instant3dit)]**Diffusion-Based Attention Warping for Consistent 3D Scene Editing**
*Eyal Gomel, Lior Wolf*
10 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.07984)] [[Project](https://attention-warp.github.io/)]**ProGDF: Progressive Gaussian Differential Field for Controllable and Flexible 3D Editing**
*Yian Zhao, Wanshi Xu, Yang Wu, Weiheng Huang, Zhongqian Sun, Wei Yang*
11 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.08152)]**EditSplat: Multi-View Fusion and Attention-Guided Optimization for View-Consistent 3D Scene Editing with 3D Gaussian Splatting**
*Dong In Lee, Hyeongcheol Park, Jiyoung Seo, Eunbyung Park, Hyunje Park, Ha Dam Baek, Shin Sangheon, Sangmin kim, Sangpil Kim*
16 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.11520)]## 3DGS Stylization
**Gaussian Splatting in Style**
*Abhishek Saroha, Mariia Gladkova, Cecilia Curreli, Tarun Yenamandra, Daniel Cremers*
arXiv preprint, 13 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.08498)]**StyleGaussian: Instant 3D Style Transfer with Gaussian Splatting**
*Kunhao Liu, Fangneng Zhan, Muyu Xu, Christian Theobalt, Ling Shao, Shijian Lu*
arXiv preprint, 12 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.07807)] [[Project](https://kunhao-liu.github.io/StyleGaussian/)] [[Code](https://github.com/Kunhao-Liu/StyleGaussian)]**StylizedGS: Controllable Stylization for 3D Gaussian Splatting**
*Dingxi Zhang, Zhuoxun Chen, Yu-Jie Yuan, Fang-Lue Zhang, Zhenliang He, Shiguang Shan, Lin Gao*
arXiv preprint, 8 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.05220)]**LoopGaussian: Creating 3D Cinemagraph with Multi-view Images via Eulerian Motion Field**
*Jiyang Li, Lechao Cheng, Zhangye Wang, Tingting Mu, Jingxuan He*
arXiv preprint, 13 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.08966)]**InFusion: Inpainting 3D Gaussians via Learning Depth Completion from Diffusion Prior**
*Zhiheng Liu, Hao Ouyang, Qiuyu Wang, Ka Leong Cheng, Jie Xiao, Kai Zhu, Nan Xue, Yu Liu, Yujun Shen, Yang Cao*
arXiv preprint, 17 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.11613)] [[Project](https://johanan528.github.io/Infusion/)] [[Code](https://github.com/ali-vilab/infusion)]**3DitScene: Editing Any Scene via Language-guided Disentangled Gaussian Splatting**
*Qihang Zhang, Yinghao Xu, Chaoyang Wang, Hsin-Ying Lee, Gordon Wetzstein, Bolei Zhou, Ceyuan Yang*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.18424)] [[Project](https://zqh0253.github.io/3DitScene/)] [[Code](https://github.com/zqh0253/3DitScene)]**Enhancing Temporal Consistency in Video Editing by Reconstructing Videos with 3D Gaussian Splatting**
*Inkyu Shin, Qihang Yu, Xiaohui Shen, In So Kweon, Kuk-Jin Yoon, Liang-Chieh Chen*
arXiv preprint, 4 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.02541)] [[Project](https://video-3dgs-project.github.io/)]**StyleSplat: 3D Object Style Transfer with Gaussian Splatting**
*Sahil Jain, Avik Kuthiala, Prabhdeep Singh Sethi, Prakanshul Saxena*
arXiv preprint, 12 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.09473)] [[Project](https://bernard0047.github.io/stylesplat/)]**InstantStyleGaussian: Efficient Art Style Transfer with 3D Gaussian Splatting**
*Xin-Yi Yu, Jun-Xin Yu, Li-Bo Zhou, Yan Wei, Lin-Lin Ou*
arXiv preprint, 8 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.04249)]**PRTGS: Precomputed Radiance Transfer of Gaussian Splats for Real-Time High-Quality Relighting**
*Yijia Guo, Yuanxi Bai, Liwen Hu, Ziyi Guo, Mianzhi Liu, Yu Cai, Tiejun Huang, Lei Ma*
arXiv preprint, 7 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.03538)]**Towards Realistic Example-based Modeling via 3D Gaussian Stitching**
*Xinyu Gao, Ziyi Yang, Bingchen Gong, Xiaoguang Han, Sipeng Yang, Xiaogang Jin*
arXiv preprint, 28 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.15708)] [[Project](https://ingra14m.github.io/gs_stitching_website)]**G-Style: Stylized Gaussian Splatting**
*Áron Samuel Kovács, Pedro Hermosilla, Renata G. Raidou*
arXiv preprint, 28 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.15695)]**WaSt-3D: Wasserstein-2 Distance for Scene-to-Scene Stylization on 3D Gaussians**
*Dmytro Kotovenko, Olga Grebenkova, Nikolaos Sarafianos, Avinash Paliwal, Pingchuan Ma, Omid Poursaeed, Sreyas Mohan, Yuchen Fan, Yilei Li, Rakesh Ranjan, Björn Ommer*
arXiv preprint, 26 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.17917)] [[Project](https://compvis.github.io/wast3d/)] [[Code](https://github.com/facebookresearch/WaSt3D)]**4DStyleGaussian: Zero-shot 4D Style Transfer with Gaussian Splatting**
*Wanlin Liang, Hongbin Xu, Weitao Chen, Feng Xiao, Wenxiong Kang*
arXiv preprint, 14 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.10412)]## 3DGS Based Video Editing
**VeGaS: Video Gaussian Splatting**
*Weronika Smolak-Dyżewska, Dawid Malarz, Kornel Howil, Jan Kaczmarczyk, Marcin Mazur, Przemysław Spurek*
17 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.11024)] [[Code](https://github.com/gmum/VeGaS)]## 3DGS for Computer Graphics
:fire:**PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics**
*Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, Chenfanfu Jiang*
CVPR 2024, 20 Nov 2023Abstract
We introduce PhysGaussian, a new method that seamlessly integrates physically grounded Newtonian dynamics within 3D Gaussians to achieve high-quality novel motion synthesis. Employing a custom Material Point Method (MPM), our approach enriches 3D Gaussian kernels with physically meaningful kinematic deformation and mechanical stress attributes, all evolved in line with continuum mechanics principles. A defining characteristic of our method is the seamless integration between physical simulation and visual rendering: both components utilize the same 3D Gaussian kernels as their discrete representations. This negates the necessity for triangle/tetrahedron meshing, marching cubes, "cage meshes," or any other geometry embedding, highlighting the principle of "what you see is what you simulate (WS2)." Our method demonstrates exceptional versatility across a wide variety of materials--including elastic entities, metals, non-Newtonian fluids, and granular materials--showcasing its strong capabilities in creating diverse visual content with novel viewpoints and movements. Our project page is at: this https URL[[arXiv](https://arxiv.org/abs/2311.12198)] [[Project](https://xpandora.github.io/PhysGaussian/)]
**Gaussian Splashing: Dynamic Fluid Synthesis with Gaussian Splatting**
*Yutao Feng, Xiang Feng, Yintong Shang, Ying Jiang, Chang Yu, Zeshun Zong, Tianjia Shao, Hongzhi Wu, Kun Zhou, Chenfanfu Jiang, Yin Yang*
arXiv preprint, 27 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.15318)] [[Project](https://amysteriouscat.github.io/GaussianSplashing/)] [[Video](https://www.youtube.com/watch?v=KgaR1ni-Egg&t=4s)]**VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality**
*Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng, Huamin Wang, Minchen Li, Henry Lau, Feng Gao, Yin Yang, Chenfanfu Jiang*
arXiv preprint, 30 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.16663)] [[Project](https://yingjiang96.github.io/VR-GS/)]**A Grid-Free Fluid Solver based on Gaussian Spatial Representation**
*Jingrui Xing, Bin Wang, Mengyu Chu, Baoquan Chen*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.18133)]**GS-Phong: Meta-Learned 3D Gaussians for Relightable Novel View Synthesis**
*Yumeng He, Yunbo Wang, Xiaokang Yang*
arXiv preprint, 31 May 2024
[[arXiv](https://arxiv.org/abs/2405.20791)]**DreamPhysics: Learning Physical Properties of Dynamic 3DGaussianswith Video Diffusion Priors**
*Tianyu Huang, Yihan Zeng, Hui Li, Wangmeng Zuo, Rynson W. H. Lau*
arXiv preprint, 3 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.01476)] [[Code](https://github.com/tyhuang0428/DreamPhysics)]**GASP: Gaussian Splatting for Physic-Based Simulations**
*Piotr Borycki, Weronika Smolak, Joanna Waczyńska, Marcin Mazur, Sławomir Tadeja, Przemysław Spurek*
arXiv preprint, 9 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.05819)]**Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation**
*Zhuoman Liu, Weicai Ye, Yan Luximon, Pengfei Wan, Di Zhang*
arXiv preprint, 21 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.14423)] [[Project](https://zhuomanliu.github.io/PhysFlow/)]**Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting**
*Haoyu Zhao, Hao Wang, Xingyue Zhao, Hongqiu Wang, Zhiyu Wu, Chengjiang Long, Hua Zou*
arXiv preprint, 19 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.12789)]**VR-Doh: Hands-on 3D Modeling in Virtual Reality**
*Zhaofeng Luo, Zhitong Cui, Shijian Luo, Mengyu Chu, Minchen Li*
1 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.00814)]## 3DGS Based Scene Understanding
**Language Embedded 3D Gaussians for Open-Vocabulary Scene Understanding**
*Jin-Chuan Shi, Miao Wang, Hao-Bin Duan, Shao-Hua Guan*
arXiv preprint, 30 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.18482)]:fire:**LangSplat: 3D Language Gaussian Splatting**
*Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, Hanspeter Pfister*
CVPR 2024, 26 Dec 2023Abstract
Humans live in a 3D world and commonly use natural language to interact with a 3D scene. Modeling a 3D language field to support open-ended language queries in 3D has gained increasing attention recently. This paper introduces LangSplat, which constructs a 3D language field that enables precise and efficient open-vocabulary querying within 3D spaces. Unlike existing methods that ground CLIP language embeddings in a NeRF model, LangSplat advances the field by utilizing a collection of 3D Gaussians, each encoding language features distilled from CLIP, to represent the language field. By employing a tile-based splatting technique for rendering language features, we circumvent the costly rendering process inherent in NeRF. Instead of directly learning CLIP embeddings, LangSplat first trains a scene-wise language autoencoder and then learns language features on the scene-specific latent space, thereby alleviating substantial memory demands imposed by explicit modeling. Existing methods struggle with imprecise and vague 3D language fields, which fail to discern clear boundaries between objects. We delve into this issue and propose to learn hierarchical semantics using SAM, thereby eliminating the need for extensively querying the language field across various scales and the regularization of DINO features. Extensive experimental results show that LangSplat significantly outperforms the previous state-of-the-art method LERF by a large margin. Notably, LangSplat is extremely efficient, achieving a 199 × speedup compared to LERF at the resolution of 1440 × 1080. We strongly recommend readers to check out our video results at this https URL[[arXiv](https://arxiv.org/abs/2312.16084)] [[Project](https://langsplat.github.io/)] [[Code](https://github.com/minghanqin/LangSplat)] [[Video](https://www.youtube.com/watch?v=XMlyjsei-Es)]
**Semantic Anything in 3D Gaussians**
*Xu Hu, Yuxi Wang, Lue Fan, Junsong Fan, Junran Peng, Zhen Lei, Qing Li, Zhaoxiang Zhang*
arXiv preprint, 31 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.17857)]**Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting**
*Jun Guo, Xiaojian Ma, Yue Fan, Huaping Liu, Qing Li*
arXiv preprint, 22 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.15624)] [[Project](https://semantic-gaussians.github.io/)] [[Code](https://github.com/sharinka0715/semantic-gaussians)]**CLIP-GS: CLIP-Informed Gaussian Splatting for Real-time and View-consistent 3D Semantic Understanding**
*Guibiao Liao, Jiankun Li, Zhenyu Bao, Xiaoqing Ye, Jingdong Wang, Qing Li, Kanglin Liu*
arXiv preprint, 22 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.14249)] [[Code](https://github.com/gbliao/CLIP-GS)]:fire:**HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting**
*Hongyu Zhou, Jiahao Shao, Lu Xu, Dongfeng Bai, Weichao Qiu, Bingbing Liu, Yue Wang, Andreas Geiger, Yiyi Liao*
CVPR 2024, 19 Mar 2024Abstract
Holistic understanding of urban scenes based on RGB images is a challenging yet important problem. It encompasses understanding both the geometry and appearance to enable novel view synthesis, parsing semantic labels, and tracking moving objects. Despite considerable progress, existing approaches often focus on specific aspects of this task and require additional inputs such as LiDAR scans or manually annotated 3D bounding boxes. In this paper, we introduce a novel pipeline that utilizes 3D Gaussian Splatting for holistic urban scene understanding. Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians, where moving object poses are regularized via physical constraints. Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy, and reconstruct dynamic scenes, even in scenarios where 3D bounding box detection are highly noisy. Experimental results on KITTI, KITTI-360, and Virtual KITTI 2 demonstrate the effectiveness of our approach.[[arXiv](https://arxiv.org/abs/2403.12722)] [[Project](https://xdimlab.github.io/hugs_website/)]
**Memorize What Matters: Emergent Scene Decomposition from Multitraverse**
*Yiming Li, Zehong Wang, Yue Wang, Zhiding Yu, Zan Gojcic, Marco Pavone, Chen Feng, Jose M. Alvarez*
arXiv preprint, 27 May 2024
[[arXiv](https://arxiv.org/abs/2405.17187)] [[Project](https://3d-gaussian-mapping.github.io/)] [[Code](https://github.com/NVlabs/3DGM)]**FastLGS: Speeding up Language Embedded Gaussians with Feature Grid Mapping**
*Yuzhou Ji, He Zhu, Junshu Tang, Wuyi Liu, Zhizhong Zhang, Yuan Xie, Lizhuang Ma, Xin Tan*
arXiv preprint, 4 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.01916)]**OpenGaussian: Towards Point-Level 3D Gaussian-based Open Vocabulary Understanding**
*Yanmin Wu, Jiarui Meng, Haijie Li, Chenming Wu, Yahao Shi, Xinhua Cheng, Chen Zhao, Haocheng Feng, Errui Ding, Jingdong Wang, Jian Zhang*
arXiv preprint, 4 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.02058)] [[Project](https://3d-aigc.github.io/OpenGaussian/)]**EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting**
*Daiwei Zhang, Gengyan Li, Jiajie Li, Mickaël Bressieux, Otmar Hilliges, Marc Pollefeys, Luc Van Gool, Xi Wang*
arXiv preprint, 28 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.19811)]**Scaling 3D Reasoning with LMMs to Large Robot Mission Environments Using Datagraphs**
*W. J. Meijer, A.C. Kemmeren, E.H.J. Riemens, J.E. Fransman, M. van Bekkum, G.J. Burghouts, J.D. van Mil*
RSS Workshop on Semantics for Robotics 2024, 15 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.10743)]**SpectralGaussians: Semantic, spectral 3D Gaussian splatting for multi-spectral scene representation, visualization and analysis**
*Saptarshi Neil Sinha, Holger Graf, Michael Weinmann*
arXiv preprint, 13 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.06975)]:fire:**ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining**
*Qi Ma, Yue Li, Bin Ren, Nicu Sebe, Ender Konukoglu, Theo Gevers, Luc Van Gool, Danda Pani Paudel*
arXiv preprint, 20 Aug 2024Abstract
3D Gaussian Splatting (3DGS) has become the de facto method of 3D representation in many vision tasks. This calls for the 3D understanding directly in this representation space. To facilitate the research in this direction, we first build a large-scale dataset of 3DGS using the commonly used ShapeNet and ModelNet datasets. Our dataset ShapeSplat consists of 65K objects from 87 unique categories, whose labels are in accordance with the respective datasets. The creation of this dataset utilized the compute equivalent of 2 GPU years on a TITAN XP GPU.
We utilize our dataset for unsupervised pretraining and supervised finetuning for classification and segmentation tasks. To this end, we introduce \textbf{\textit{Gaussian-MAE}}, which highlights the unique benefits of representation learning from Gaussian parameters. Through exhaustive experiments, we provide several valuable insights. In particular, we show that (1) the distribution of the optimized GS centroids significantly differs from the uniformly sampled point cloud (used for initialization) counterpart; (2) this change in distribution results in degradation in classification but improvement in segmentation tasks when using only the centroids; (3) to leverage additional Gaussian parameters, we propose Gaussian feature grouping in a normalized feature space, along with splats pooling layer, offering a tailored solution to effectively group and embed similar Gaussians, which leads to notable improvement in finetuning tasks.[[arXiv](https://arxiv.org/abs/2408.10906)]
**GS-PT: Exploiting 3D Gaussian Splatting for Comprehensive Point Cloud Understanding via Self-supervised Learning**
*Keyi Liu, Yeqi Luo, Weidong Yang, Jingyi Xu, Zhijun Li, Wen-Ming Chen, Ben Fei*
arXiv preprint, 8 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.04963)]**Gradient-Driven 3D Segmentation and Affordance Transfer in Gaussian Splatting Using 2D Masks**
*Joji Joseph, Bharadwaj Amrutur, Shalabh Bhatnagar*
arXiv preprint, 18 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.11681)] [[Project](https://jojijoseph.github.io/3dgs-segmentation/)] [[Code](https://github.com/JojiJoseph/3dgs-gradient-segmentation)]**EdgeGaussians -- 3D Edge Mapping via Gaussian Splatting**
*Kunal Chelani, Assia Benbihi, Torsten Sattler, Fredrik Kahl*
arXiv preprint, 19 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12886)] [[Code](https://github.com/kunalchelani/EdgeGaussians)]**SRIF: Semantic Shape Registration Empowered by Diffusion-based Image Morphing and Flow Estimation**
*Mingze Sun, Chen Guo, Puhua Jiang, Shiwei Mao, Yurun Chen, Ruqi Huang*
arXiv preprint, 18 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.11682)]
**Semantics-Controlled Gaussian Splatting for Outdoor Scene Reconstruction and Rendering in Virtual Reality**
*Hannah Schieber, Jacob Young, Tobias Langlotz, Stefanie Zollmann, Daniel Roth*
arXiv preprint, 24 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.15959)]**3DGS-DET: Empower 3D Gaussian Splatting with Boundary Guidance and Box-Focused Sampling for 3D Object Detection**
*Yang Cao, Yuanliang Jv, Dan Xu*
arXiv preprint, 2 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.01647)] [[Code](https://github.com/yangcaoai/3DGS-DET)]**Gaussian-Det: Learning Closed-Surface Gaussians for 3D Object Detection**
*Hongru Yan, Yu Zheng, Yueqi Duan*
arXiv preprint, 2 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.01404)]**3D Vision-Language Gaussian Splatting**
*Qucheng Peng, Benjamin Planche, Zhongpai Gao, Meng Zheng, Anwesa Choudhuri, Terrence Chen, Chen Chen, Ziyan Wu*
arXiv preprint, 10 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.07577)]**4-LEGS: 4D Language Embedded Gaussian Splatting**
*Gal Fiebelman, Tamir Cohen, Ayellet Morgenstern, Peter Hedman, Hadar Averbuch-Elor*
arXiv preprint, 14 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.10719)] [[Project](https://tau-vailab.github.io/4-LEGS/)]**3DArticCyclists: Generating Simulated Dynamic 3D Cyclists for Human-Object Interaction (HOI) and Autonomous Driving Applications**
*Eduardo R. Corral-Soto, Yang Liu, Tongtong Cao, Yuan Ren, Liu Bingbing*
arXiv preprint, 14 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.10782)]**MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps**
*Yating Xu, Chen Li, Gim Hee Lee*
NeurIPS 2024, 28 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.21566)] [[Code](https://github.com/Pixie8888/MVSDet)]**Splat: FAST-Fast, Ambiguity-Free Semantics Transfer in Gaussian Splatting**
*Ola Shorinwa, Jiankai Sun, Mac Schwager*
arXiv preprint, 20 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.13753)]**GLS: Geometry-aware 3D Language Gaussian Splatting**
*Jiaxiong Qiu, Liu Liu, Zhizhong Su, Tianwei Lin*
27 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.18066)] [[Code](https://github.com/JiaxiongQ/GLS)]**UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation**
*Guangzhao Dai, Jian Zhao, Yuantao Chen, Yusen Qin, Hao Zhao, Guosen Xie, Yazhou Yao, Xiangbo Shu, Xuelong Li*
25 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.16053)]**Planar Gaussian Splatting**
*Farhad G. Zanjani, Hong Cai, Hanno Ackermann, Leila Mirvakhabova, Fatih Porikli*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01931)]**LineGS : 3D Line Segment Representation on 3D Gaussian Splatting**
*Chenggang Yang, Yuang Shi, Wei Tsang Ooi*
13 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.00477)]**SparseLGS: Sparse View Language Embedded Gaussian Splatting**
*Jun Hu, Zhang Chen, Zhong Li, Yi Xu, Juyong Zhang*
3 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.02245)] [[Project](https://ustc3dv.github.io/SparseLGS/)]**Occam's LGS: A Simple Approach for Language Gaussian Splatting**
*Jiahuan Cheng, Jan-Nico Zaech, Luc Van Gool, Danda Pani Paudel*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01807)] [[Project](https://insait-institute.github.io/OccamLGS/)] [[Code](https://github.com/insait-institute/OccamLGS)]**ChatSplat: 3D Conversational Gaussian Splatting**
*Hanlin Chen, Fangyin Wei, Gim Hee Lee*
1 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.00734)]**Feat2GS: Probing Visual Foundation Models with Gaussian Splatting**
*Yue Chen, Xingyu Chen, Anpei Chen, Gerard Pons-Moll, Yuliang Xiu*
12 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.09606)] [[Project](https://fanegg.github.io/Feat2GS/)]**SLGaussian: Fast Language Gaussian Splatting in Sparse Views**
*Kangjie Chen, BingQuan Dai, Minghan Qin, Dongbin Zhang, Peihao Li, Yingshuang Zou, Haoqian Wang*
11 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.08331)]**LangSurf: Language-Embedded Surface Gaussians for 3D Scene Understanding**
*Hao Li, Roy Qin, Zhengyu Zou, Diqi He, Bohan Li, Bingquan Dai, Dingewn Zhang, Junwei Han*
23 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.17635)] [[Project](https://langsurf.github.io/)] [[Code](https://github.com/lifuguan/LangSurf)]**GSemSplat: Generalizable Semantic 3D Gaussian Splatting from Uncalibrated Image Pairs**
*Xingrui Wang, Cuiling Lan, Hanxin Zhu, Zhibo Chen, Yan Lu*
22 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.16932)]**GAGS: Granularity-Aware Feature Distillation for Language Gaussian Splatting**
*Yuning Peng, Haiping Wang, Yuan Liu, Chenglu Wen, Zhen Dong, Bisheng Yang*
18 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.13654)] [[Project](https://pz0826.github.io/GAGS-Webpage/)] [[Code](https://github.com/WHU-USI3DV/GAGS)]**Vivar: A Generative AR System for Intuitive Multi-Modal Sensor Data Presentation**
*Yunqi Guo, Kaiyuan Hou, Heming Fu, Hongkai Chen, Zhenyu Yan, Guoliang Xing, Xiaofan Jiang*
18 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.13509)]## 3DGS based Segmentation
**2D-Guided 3D Gaussian Segmentation**
*Kun Lan, Haoran Li, Haolin Shi, Wenjun Wu, Yong Liao, Lin Wang, Pengyuan Zhou*
arXiv preprint, 26 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.16047)]**CoSSegGaussians: Compact and Swift Scene Segmenting 3D Gaussians**
*Bin Dou, Tianyu Zhang, Yongjia Ma, Zhaohui Wang, Zejian Yuan*
arXiv preprint, 11 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.05925)] [[Project](https://david-dou.github.io/CoSSegGaussians/)]**OMEGAS: Object Mesh Extraction from Large Scenes Guided by Gaussian Segmentation**
*Lizhi Wang, Feng Zhou, Jianqin Yin*
arXiv preprint, 24 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.15891)] [[Code](https://github.com/CrystalWlz/OMEGAS)]**RT-GS2: Real-Time Generalizable Semantic Segmentation for 3D Gaussian Representations of Radiance Fields**
*Mihnea-Bogdan Jurca, Remco Royen, Ion Giosan, Adrian Munteanu*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.18033)]**Fast and Efficient: Mask Neural Fields for 3D Scene Segmentation**
*Zihan Gao, Lingling Li, Licheng Jiao, Fang Liu, Xu Liu, Wenping Ma, Yuwei Guo, Shuyuan Yang*
arXiv preprintm, 1 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.01220)]**Segment Any 4D Gaussians**
*Shengxiang Ji, Guanjun Wu, Jiemin Fang, Jiazhong Cen, Taoran Yi, Wenyu Liu, Qi Tian, Xinggang Wang*
arXiv preprint, 5 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.04504)] [[Project](https://jsxzs.github.io/sa4d/)]**Click-Gaussian: Interactive Segmentation to Any 3D Gaussians**
*Seokhun Choi, Hyeonseop Song, Jaechul Kim, Taehyeong Kim, Hoseok Do*
ECCV 2024, 16 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.11793)] [[Project](https://seokhunchoi.github.io/Click-Gaussian/)]:fire:**FlashSplat: 2D to 3D Gaussian Splatting Segmentation Solved Optimally**
*Qiuhong Shen, Xingyi Yang, Xinchao Wang*
ECCV 2024, 12 Sep 2024Abstract
This study addresses the challenge of accurately segmenting 3D Gaussian Splatting from 2D masks. Conventional methods often rely on iterative gradient descent to assign each Gaussian a unique label, leading to lengthy optimization and sub-optimal solutions. Instead, we propose a straightforward yet globally optimal solver for 3D-GS segmentation. The core insight of our method is that, with a reconstructed 3D-GS scene, the rendering of the 2D masks is essentially a linear function with respect to the labels of each Gaussian. As such, the optimal label assignment can be solved via linear programming in closed form. This solution capitalizes on the alpha blending characteristic of the splatting process for single step optimization. By incorporating the background bias in our objective function, our method shows superior robustness in 3D segmentation against noises. Remarkably, our optimization completes within 30 seconds, about 50× faster than the best existing methods. Extensive experiments demonstrate the efficiency and robustness of our method in segmenting various scenes, and its superior performance in downstream tasks such as object removal and inpainting. Demos and code will be available at this https URL.[[arXiv](https://arxiv.org/abs/2409.08270)] [[Code](https://github.com/florinshen/FlashSplat)]
**PLGS: Robust Panoptic Lifting with 3D Gaussian Splatting**
*Yu Wang, Xiaobao Wei, Ming Lu, Guoliang Kang*
arXiv preprint, 23 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.17505)]**GaussianCut: Interactive segmentation via graph cut for 3D Gaussian Splatting**
*Umangi Jain, Ashkan Mirzaei, Igor Gilitschenski*
arXiv preprint, 12 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.07555)]**GradiSeg: Gradient-Guided Gaussian Segmentation with Enhanced 3D Boundary Precision**
*Zehao Li, Wenwei Han, Yujun Cai, Hao Jiang, Baolong Bi, Shuqin Gao, Honglong Zhao, Zhaoqi Wang*
30 Nov 2024
[[arXiv](https://arxiv.org/abs/2412.00392)]**Efficient Semantic Splatting for Remote Sensing Multi-view Segmentation**
*Zipeng Qi, Hao Chen, Haotian Zhang, Zhengxia Zou, Zhenwei Shi*
12 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.05969)]**SuperGSeg: Open-Vocabulary 3D Segmentation with Structured Super-Gaussians**
*Siyun Liang, Sen Wang, Kunyi Li, Michael Niemeyer, Stefano Gasperini, Nassir Navab, Federico Tombari*
13 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.10231)]**DCSEG: Decoupled 3D Open-Set Segmentation using Gaussian Splatting**
*Luis Wiedmann, Luca Wiehe, David Rozenberszki*
14 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.10972)]## 3DGS + Specular
**Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting**
*Ziyi Yang, Xinyu Gao, Yangtian Sun, Yihua Huang, Xiaoyang Lyu, Wen Zhou, Shaohui Jiao, Xiaojuan Qi, Xiaogang Jin*
arXiv preprint, 24 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.15870)]## 3DGS Based SLAM
### 3DGS SLAM Surveys and Benchmarks
**NeRF and Gaussian Splatting SLAM in the Wild**
*Fabian Schmidt, Markus Enzweiler, Abhinav Valada*
4 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.03263)] [[Code](https://github.com/iis-esslingen/nerf-3dgs-benchmark)]### 3DGS SLAM Progresses
**GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting**
*Chi Yan, Delin Qu, Dan Xu, Bin Zhao, Zhigang Wang, Dong Wang, Xuelong Li*
CVPR 2024, 20 Nov 2023
[[arXiv](https://arxiv.org/abs/2311.11700)] [[Project](https://gs-slam.github.io/)]:fire:**SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM**
*Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer, Deva Ramanan, Jonathon Luiten*
CVPR 2024, 4 Dec 2023Abstract
Dense simultaneous localization and mapping (SLAM) is crucial for robotics and augmented reality applications. However, current methods are often hampered by the non-volumetric or implicit way they represent a scene. This work introduces SplaTAM, an approach that, for the first time, leverages explicit volumetric representations, i.e., 3D Gaussians, to enable high-fidelity reconstruction from a single unposed RGB-D camera, surpassing the capabilities of existing methods. SplaTAM employs a simple online tracking and mapping system tailored to the underlying Gaussian representation. It utilizes a silhouette mask to elegantly capture the presence of scene density. This combination enables several benefits over prior representations, including fast rendering and dense optimization, quickly determining if areas have been previously mapped, and structured map expansion by adding more Gaussians. Extensive experiments show that SplaTAM achieves up to 2x superior performance in camera pose estimation, map construction, and novel-view synthesis over existing methods, paving the way for more immersive high-fidelity SLAM applications.[[arXiv](https://arxiv.org/abs/2312.02126)] [[Project](https://spla-tam.github.io/)] [[Code](https://github.com/spla-tam/SplaTAM)] [[Video](https://youtu.be/jWLI-OFp3qU)]
**Gaussian-SLAM: Photo-realistic Dense SLAM with Gaussian Splatting**
*Vladimir Yugay, Yue Li, Theo Gevers, Martin R. Oswald*
6 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.10070)]:fire:**Gaussian Splatting SLAM**
*Hidenobu Matsuki, Riku Murai, Paul H.J. Kelly, Andrew J. Davison*
CVPR 2024, 11 Dec 2024Abstract
We present the first application of 3D Gaussian Splatting in monocular SLAM, the most fundamental but the hardest setup for Visual SLAM. Our method, which runs live at 3fps, utilises Gaussians as the only 3D representation, unifying the required representation for accurate, efficient tracking, mapping, and high-quality rendering. Designed for challenging monocular settings, our approach is seamlessly extendable to RGB-D SLAM when an external depth sensor is available. Several innovations are required to continuously reconstruct 3D scenes with high fidelity from a live camera. First, to move beyond the original 3DGS algorithm, which requires accurate poses from an offline Structure from Motion (SfM) system, we formulate camera tracking for 3DGS using direct optimisation against the 3D Gaussians, and show that this enables fast and robust tracking with a wide basin of convergence. Second, by utilising the explicit nature of the Gaussians, we introduce geometric verification and regularisation to handle the ambiguities occurring in incremental 3D dense reconstruction. Finally, we introduce a full SLAM system which not only achieves state-of-the-art results in novel view synthesis and trajectory estimation but also reconstruction of tiny and even transparent objects.[[arXiv](https://arxiv.org/abs/2312.06741)] [[Project](https://rmurai.co.uk/projects/GaussianSplattingSLAM/)]
**LIV-GaussMap: LiDAR-Inertial-Visual Fusion for Real-time 3D Radiance Field Map Rendering**
*Sheng Hong, Junjie He, Xinhu Zheng, Hesheng Wang, Hao Fang, Kangcheng Liu, Chunran Zheng, Shaojie Shen*
arXiv preprint, 26 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.14857)]:fire:**SGS-SLAM: Semantic Gaussian Splatting For Neural Dense SLAM**
*Mingrui Li, Shuhong Liu, Heng Zhou*
arXiv preprint, 5 Feb 2024
Abstract
We present SGS-SLAM, the first semantic visual SLAM system based on Gaussian Splatting. It incorporates appearance, geometry, and semantic features through multi-channel optimization, addressing the oversmoothing limitations of neural implicit SLAM systems in high-quality rendering, scene understanding, and object-level geometry. We introduce a unique semantic feature loss that effectively compensates for the shortcomings of traditional depth and color losses in object optimization. Through a semantic-guided keyframe selection strategy, we prevent erroneous reconstructions caused by cumulative errors. Extensive experiments demonstrate that SGS-SLAM delivers state-of-the-art performance in camera pose estimation, map reconstruction, precise semantic segmentation, and object-level geometric accuracy, while ensuring real-time rendering capabilities.[[arXiv](https://arxiv.org/abs/2402.03246)]
**MoD-SLAM: Monocular Dense Mapping for Unbounded 3D Scene Reconstruction**
*Heng Zhou, Zhetao Guo, Shuhong Liu, Lechen Zhang, Qihao Wang, Yuxiang Ren, Mingrui Li*
arXiv preprint, 6 Feb 2024
[[arXiv](https://arxiv.org/abs/2402.03762)]**SemGauss-SLAM: Dense Semantic Gaussian Splatting SLAM**
*Siting Zhu, Renjie Qin, Guangming Wang, Jiuming Liu, Hesheng Wang*
arXiv preprint, 13 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.07494)]**RGBD GS-ICP SLAM**
*Seongbo Ha, Jiung Yeon, Hyeonwoo Yu*
arXiv preprint, 19 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.12550)]**NEDS-SLAM: A Novel Neural Explicit Dense Semantic SLAM Framework using 3D Gaussian Splatting**
*Yiming Ji, Yang Liu, Guanghu Xie, Boyu Ma, Zongwu Xie*
arXiv preprint, 18 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.11679)]**CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-aware 3D Gaussian Field**
*Jiarui Hu, Xianhao Chen, Boyin Feng, Guanglin Li, Liangjing Yang, Hujun Bao, Guofeng Zhang, Zhaopeng Cui*
arXiv preprint, 24 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.16095)] [[Project](https://zju3dv.github.io/cg-slam/)] [[Code](https://github.com/hjr37/CG-SLAM)]**RGBD GS-ICP SLAM**
*Seongbo Ha, Jiung Yeon, Hyeonwoo Yu*
arXiv preprint, 19 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.12550)]**HGS-Mapping: Online Dense Mapping Using Hybrid Gaussian Representation in Urban Scenes**
*Ke Wu, Kaizhao Zhang, Zhiwei Zhang, Shanshuai Yuan, Muer Tie, Julong Wei, Zijun Xu, Jieru Zhao, Zhongxue Gan, Wenchao Ding*
arXiv preprint, 29 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.20159)]**MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements**
*Lisong C. Sun, Neel P. Bhatt, Jonathan C. Liu, Zhiwen Fan, Zhangyang Wang, Todd E. Humphreys, Ufuk Topcu*
arXiv preprint, 1 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.00923)] [[Project](https://vita-group.github.io/MM3DGS-SLAM/)] [[Video](https://www.youtube.com/watch?v=drf6UxehChE&feature=youtu.be)]**Gaussian-LIC: Photo-realistic LiDAR-Inertial-Camera SLAM with 3D Gaussian Splatting**
*Xiaolei Lang, Laijian Li, Hang Zhang, Feng Xiong, Mu Xu, Yong Liu, Xingxing Zuo, Jiajun Lv*
IROS 2024, 10 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.06926)]**RTG-SLAM: Real-time 3D Reconstruction at Scale using Gaussian Splatting**
*Zhexi Peng, Tianjia Shao, Yong Liu, Jingke Zhou, Yin Yang, Jingdong Wang, Kun Zhou*
arXiv preprint, 30 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.19706)]**MGS-SLAM: Monocular Sparse Tracking and Gaussian Mapping with Depth Smooth Regularization**
*Pengcheng Zhu, Yaoming Zhuang, Baoquan Chen, Li Li, Chengdong Wu, Zhanlin Liu*
arXiv preprint, 10 May 2024
[[arXiv](https://arxiv.org/abs/2405.06241)]**NGM-SLAM: Gaussian Splatting SLAM with Radiance Field Submap**
*Mingrui Li, Jingwei Huang, Lei Sun, Aaron Xuxiang Tian, Tianchen Deng, Hongyu Wang*
arXiv preprint, 9 May 2024
[[arXiv](https://arxiv.org/abs/2405.05702)]**GS-Planner: A Gaussian-Splatting-based Planning Framework for Active High-Fidelity Reconstruction**
*Rui Jin, Yuman Gao, Haojian Lu, Fei Gao*
arXiv preprint, 16 May 2024
[[arXiv](https://arxiv.org/abs/2405.10142)]**GaussNav: Gaussian Splatting for Visual Navigation**
*Xiaohan Lei, Min Wang, Wengang Zhou, Houqiang Li*
arXiv preprint, 18 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.11625)]**Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians**
*Erik Sandström, Keisuke Tateno, Michael Oechsle, Michael Niemeyer, Luc Van Gool, Martin R. Oswald, Federico Tombari*
arXiv preprint, 26 May 2024
[[arXiv](https://arxiv.org/abs/2405.16544)] [[Code](https://github.com/eriksandstroem/Splat-SLAM)]**Structure Gaussian SLAM with Manhattan World Hypothesis**
*Shuhong Liu, Heng Zhou, Liuzhuozheng Li, Yun Liu, Tianchen Deng, Yiming Zhou, Mingrui Li*
arXiv preprint, 30 May 2024
[[arXiv](https://arxiv.org/abs/2405.20031)]**From Perfect to Noisy World Simulation: Customizable Embodied Multi-modal Perturbations for SLAM Robustness Benchmarking**
*Xiaohao Xu, Tianyi Zhang, Sibo Wang, Xiang Li, Yongqi Chen, Ye Li, Bhiksha Raj, Matthew Johnson-Roberson, Xiaonan Huang*
arXiv preprint, 24 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.16850)]**I^2-SLAM: Inverting Imaging Process for Robust Photorealistic Dense SLAM**
*Gwangtak Bae, Changwoon Choi, Hyeongjun Heo, Sang Min Kim, Young Min Kim*
ECCV 2024, 16 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.11347)]**Evaluating Modern Approaches in 3D Scene Reconstruction: NeRF vs Gaussian-Based Methods**
*Yiming Zhou, Zixuan Zeng, Andi Chen, Xiaofan Zhou, Haowei Ni, Shiyao Zhang, Panfeng Li, Liangxi Liu, Mengyao Zheng, Xupeng Chen*
2024 6th International Conference on Data-driven Optimization of Complex Systems, 8 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.04268)]**Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis**
*Zhongche Qu, Zhi Zhang, Cong Liu, Jianhua Yin*
arXiv preprint, 10 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.05635)]**Towards Real-Time Gaussian Splatting: Accelerating 3DGS through Photometric SLAM**
*Yan Song Hu, Dayou Mao, Yuhao Chen, John Zelek*
arXiv preprint, 7 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.03825)]**IG-SLAM: Instant Gaussian SLAM**
*F. Aykut Sarikamis, A. Aydin Alatan*
arXiv preprint, 2 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.01126)]**MotionGS : Compact Gaussian Splatting SLAM by Motion Filter**
*Xinli Guo, Peng Han, Weidong Zhang, Hongtian Chen*
arXiv preprint, 18 May 2024
[[arXiv](https://arxiv.org/abs/2405.11129)]**GSFusion: Online RGB-D Mapping Where Gaussian Splatting Meets TSDF Fusion**
*Jiaxin Wei, Stefan Leutenegger*
arXiv preprint, 22 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.12677)] [[Code](https://github.com/GS-Fusion/GSFusion)]**LoopSplat: Loop Closure by Registering 3D Gaussian Splats**
*Liyuan Zhu, Yue Li, Erik Sandström, Shengyu Huang, Konrad Schindler, Iro Armeni*
3DV 2025, 19 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.10154)] [[Project](https://loopsplat.github.io/)] [[Code](https://github.com/GradientSpaces/LoopSplat)]**OG-Mapping: Octree-based Structured 3DGaussians for Online Dense Mapping**
*Meng Wang, Junyi Wang, Changqun Xia, Chen Wang, Yue Qi*
arXiv preprint, 30 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.17223)]**FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry**
*Chunran Zheng, Wei Xu, Zuhao Zou, Tong Hua, Chongjian Yuan, Dongjiao He, Bingyang Zhou, Zheng Liu, Jiarong Lin, Fangcheng Zhu, Yunfan Ren, Rong Wang, Fanle Meng, Fu Zhang*
arXiv preprint, 26 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.14035)]**Hi-SLAM: Scaling-up Semantics in SLAM with a Hierarchically Categorical Gaussian Splatting**
*Boying Li, Zhixi Cai, Yuan-Fang Li, Ian Reid, Hamid Rezatofighi*
arXiv preprint, 19 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.12518)]**GLC-SLAM: Gaussian Splatting SLAM with Efficient Loop Closure**
*Ziheng Xu, Qingfeng Li, Chen Chen, Xuefeng Liu, Jianwei Niu*
arXiv preprint, 17 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.10982)]**Go-SLAM: Grounded Object Segmentation and Localization with Gaussian Splatting SLAM**
*Phu Pham, Dipam Patel, Damon Conover, Aniket Bera*
arXiv preprint, 26 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.16944)]**CaRtGS: Computational Alignment for Real-Time Gaussian Splatting SLAM**
*Dapeng Feng, Zhiqiang Chen, Yizhen Yin, Shipeng Zhong, Yuhua Qi, Hongbo Chen*
arXiv preprint, 1 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.00486)]**Robust Gaussian Splatting SLAM by Leveraging Loop Closure**
*Zunjie Zhu, Youxu Fang, Xin Li, Chengang Yan, Feng Xu, Chau Yuen, Yanyan Li*
arXiv preprint, 30 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.20111)]**ES-Gaussian: Gaussian Splatting Mapping via Error Space-Based Gaussian Completion**
*Lu Chen, Yingfu Zeng, Haoang Li, Zhitao Deng, Jiafu Yan, Zhenjun Zhao*
arXiv preprint, 9 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.06613)] [[Project](https://chenlu-china.github.io/ES-Gaussian/)]**GSLoc: Visual Localization with 3D Gaussian Splatting**
*Kazii Botashev, Vladislav Pyatov, Gonzalo Ferrer, Stamatios Lefkimmiatis*
arXiv preprint, 8 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.06165)]**LoGS: Visual Localization via Gaussian Splatting with Fewer Training Images**
*Yuzhou Cheng, Jianhao Jiao, Yue Wang, Dimitrios Kanoulas*
arXiv preprint, 15 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.11505)]**GSORB-SLAM: Gaussian Splatting SLAM benefits from ORB features and Transmittance information**
*Wancai Zheng, Xinyi Yu, Jintao Rong, Linlin Ou, Yan Wei, Libo Zhou*
arXiv preprint, 15 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.11356)]**AG-SLAM: Active Gaussian Splatting SLAM**
*Wen Jiang, Boshu Lei, Katrina Ashton, Kostas Daniilidis*
arXiv preprint, 22 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.17422)]**XRDSLAM: A Flexible and Modular Framework for Deep Learning based SLAM**
*Xiaomeng Wang, Nan Wang, Guofeng Zhang*
arXiv preprint, 31 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.23690)]**LVI-GS: Tightly-coupled LiDAR-Visual-Inertial SLAM using 3D Gaussian Splatting**
*Huibin Zhao, Weipeng Guan, Peng Lu*
arXiv preprint, 5 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.02703)]**DG-SLAM: Robust Dynamic Gaussian Splatting SLAM with Hybrid Pose Optimization**
*Yueming Xu, Haochen Jiang, Zhongyang Xiao, Jianfeng Feng, Li Zhang*
arXiv preprint, 13 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.08373)]**MBA-SLAM: Motion Blur Aware Dense Visual SLAM with Radiance Fields Representation**
*Peng Wang, Lingzhe Zhao, Yin Zhang, Shiyu Zhao, Peidong Liu*
arXiv preprint, 13 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.08279)] [[Code](https://github.com/WU-CVGL/MBA-SLAM)]**LiV-GS: LiDAR-Vision Integration for 3D Gaussian Splatting SLAM in Outdoor Environments**
*Renxiang Xiao, Wei Liu, Yushuai Chen, Liang Hu*
19 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.12185)]**DGS-SLAM: Gaussian Splatting SLAM in Dynamic Environment**
*Mangyu Kong, Jaewon Lee, Seongwon Lee, Euntai Kim*
16 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.10722)]**HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction**
*Wei Zhang, Qing Cheng, David Skuddis, Niclas Zeller, Daniel Cremers, Norbert Haala*
27 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.17982)] [[Project](https://hi-slam2.github.io/)] [[Code](https://github.com/Willyzw/HI-SLAM2)]**DROID-Splat: Combining end-to-end SLAM with 3D Gaussian Splatting**
*Christian Homeyer, Leon Begiristain, Christoph Schnörr*
26 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.17660)] [[Code](https://github.com/ChenHoy/DROID-Splat)]**PG-SLAM: Photo-realistic and Geometry-aware RGB-D SLAM in Dynamic Environments**
*Haoang Li, Xiangqi Meng, Xingxing Zuo, Zhe Liu, Hesheng Wang, Daniel Cremers*
24 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.15800)]**Gassidy: Gaussian Splatting SLAM in Dynamic Environments**
*Long Wen, Shixin Li, Yu Zhang, Yuhong Huang, Jianjie Lin, Fengjunjie Pan, Zhenshan Bing, Alois Knoll*
23 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.15476)]**RGBDS-SLAM: A RGB-D Semantic Dense SLAM Based on 3D Multi Level Pyramid Gaussian Splatting**
*Zhenzhong Cao, Chenyang Zhao, Qianyi Zhang, Jinzheng Guang, Yinuo Song Jingtai Liu*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01217)] [[Code](https://github.com/zhenzhongcao/RGBDS-SLAM)]**FlashSLAM: Accelerated RGB-D SLAM for Real-Time 3D Scene Reconstruction with Gaussian Splatting**
*Phu Pham, Damon Conover, Aniket Bera*
1 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.00682)]**MAC-Ego3D: Multi-Agent Gaussian Consensus for Real-Time Collaborative Ego-Motion and Photorealistic 3D Reconstruction**
*Xiaohao Xu, Feng Xue, Shibo Zhao, Yike Pan, Sebastian Scherer, Xiaonan Huang*
12 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.09723)] [[Code](https://github.com/Xiaohao-Xu/MAC-Ego3D)]**RP-SLAM: Real-time Photorealistic SLAM with Efficient 3D Gaussian Splatting**
*Lizhi Bai, Chunqi Tian, Jun Yang, Siyu Zhang, Masanori Suganuma, Takayuki Okatani*
13 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.09868)]**4D Radar-Inertial Odometry based on Gaussian Modeling and Multi-Hypothesis Scan Matching**
*Fernando Amodeo, Luis Merino, Fernando Caballero*
18 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.13639)] [[Code](https://github.com/robotics-upo/gaussian-rio)]## 3DGS Based 3D Point Tracking
**DynOMo: Online Point Tracking by Dynamic Online Monocular Gaussian Reconstruction**
*Jenny Seidenschwarz, Qunjie Zhou, Bardienus Duisterhof, Deva Ramanan, Laura Leal-Taixé*
arXiv preprint, 3 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.02104)]## 3DGS Based Inverse Rendering
**GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization**
*Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen Zhao, Haocheng Feng, Jingtuo Liu, Liangjun Zhang, Jian Zhang, Bin Zhou, Errui Ding, Jingdong Wang*
arXiv preprint, 8 Dec, 2023
[[arXiv](https://arxiv.org/abs/2312.05133)] [[Project](https://3dgir.github.io/)]**DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading**
*Tong Wu, Jia-Mu Sun, Yu-Kun Lai, Yuewen Ma, Leif Kobbelt, Lin Gao*
arXiv preprint, 15 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.09412)]**Progressive Radiance Distillation for Inverse Rendering with Gaussian Splatting**
*Keyang Ye, Qiming Hou, Kun Zhou*
arXiv preprint, 14 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.07595)]**GS-ID: Illumination Decomposition on Gaussian Splatting via Diffusion Prior and Parametric Light Source Optimization**
*Kang Du, Zhihao Liang, Zeyu Wang*
arXiv preprint, 16 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.08524)]**Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering**
*Euntae Choi, Sungjoo Yoo*
arXiv preprint, 16 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.10335)]:fire: **Flash-Splat: 3D Reflection Removal with Flash Cues and Gaussian Splats**
*Mingyang Xie, Haoming Cai, Sachin Shah, Yiran Xu, Brandon Y. Feng, Jia-Bin Huang, Christopher A. Metzler*
arXiv preprint, 3 Oct 2024Abstract
We introduce a simple yet effective approach for separating transmitted and reflected light. Our key insight is that the powerful novel view synthesis capabilities provided by modern inverse rendering methods (e.g.,~3D Gaussian splatting) allow one to perform flash/no-flash reflection separation using unpaired measurements -- this relaxation dramatically simplifies image acquisition over conventional paired flash/no-flash reflection separation methods. Through extensive real-world experiments, we demonstrate our method, Flash-Splat, accurately reconstructs both transmitted and reflected scenes in 3D. Our method outperforms existing 3D reflection separation methods, which do not leverage illumination control, by a large margin. Our project webpage is at this https URL.[[arXiv](https://arxiv.org/abs/2410.02764)] [[Project](https://flash-splat.github.io/)] [[Code](https://github.com/mingyangx/flash-splat)]
**GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering**
*Hongze Chen, Zehong Lin, Jun Zhang*
arXiv preprint, 3 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.02619)]**RelitLRM: Generative Relightable Radiance for Large Reconstruction Models**
*Tianyuan Zhang, Zhengfei Kuang, Haian Jin, Zexiang Xu, Sai Bi, Hao Tan, He Zhang, Yiwei Hu, Milos Hasan, William T. Freeman, Kai Zhang, Fujun Luan*
arXiv preprint, 8 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.06231)] [[Project](https://relit-lrm.github.io/)]**GS^3: Efficient Relighting with Triple Gaussian Splatting**
*Zoubin Bi, Yixin Zeng, Chong Zeng, Fan Pei, Xiang Feng, Kun Zhou, Hongzhi Wu*
SIGGRAPH Asia 2024, 15 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.11419)] [[Project](https://gsrelight.github.io/)] [[Code](https://github.com/gsrelight/gs-relight)]**Triplet: Triangle Patchlet for Mesh-Based Inverse Rendering and Scene Parameters Approximation**
*Jiajie Yang*
arXiv preprint, 16 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.12414)]**GlossyGS: Inverse Rendering of Glossy Objects with 3D Gaussian Splatting**
*Shuichang Lai, Letian Huang, Jie Guo, Kai Cheng, Bowen Pan, Xiaoxiao Long, Jiangjing Lyu, Chengfei Lv, Yanwen Guo*
arXiv preprint, 17 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.13349)]**SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes**
*Cheng-De Fan, Chen-Wei Chang, Yi-Ruei Liu, Jie-Ying Lee, Jiun-Long Huang, Yu-Chee Tseng, Yu-Lun Liu*
arXiv preprint, 22 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.17249)] [[Project](https://cdfan0627.github.io/spectromotion/)]**GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering**
*Kai Ye, Chong Gao, Guanbin Li, Wenzheng Chen, Baoquan Chen*
arXiv preprint, 31 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.24204)] [[Project](https://pku-vcl-geometry.github.io/GeoSplatting/)]**Scaled Inverse Graphics: Efficiently Learning Large Sets of 3D Scenes**
*Karim Kassab, Antoine Schnepf, Jean-Yves Franceschi, Laurent Caraffa, Flavian Vasile, Jeremie Mary, Andrew Comport, Valérie Gouet-Brunet*
arXiv preprint, 31 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.23742)] [[Project](https://scaled-ig.github.io/)]**GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering**
*Zhihao Liang, Hongdong Li, Kui Jia, Kailing Guo, Qi Zhang*
arXiv preprint, 12 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.07478)]**IRGS: Inter-Reflective Gaussian Splatting with 2D Gaussian Ray Tracing**
*Chun Gu, Xiaofei Wei, Zixuan Zeng, Yuxuan Yao, Li Zhang*
20 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.15867)] [[Project](https://fudan-zvg.github.io/IRGS/)] [[Code](https://github.com/fudan-zvg/IRGS)]## 3DGS Imaging Tasks
**Deblurring 3D Gaussian Splatting**
*Byeonghyeon Lee, Howoong Lee, Xiangyu Sun, Usman Ali, Eunbyung Park*
arXiv preprint, 1 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.00834)] [[Project](https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/)] [[Code](https://github.com/benhenryL/Deblurring-3D-Gaussian-Splatting)]**BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting**
*Lingzhe Zhao, Peng Wang, Peidong Liu*
arXiv preprint, 18 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.11831)] [[Project](https://lingzhezhao.github.io/BAD-Gaussians/)] [[Code](https://github.com/WU-CVGL/BAD-Gaussians)]**Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion**
*Otto Seiskari, Jerry Ylilammi, Valtteri Kaatrasalo, Pekka Rantalankila, Matias Turkulainen, Juho Kannala, Esa Rahtu, Arno Solin*
arXiv preprint, 20 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.13327)] [[Code](https://github.com/SpectacularAI/3dgs-deblur)]**BAGS: Blur Agnostic Gaussian Splatting through Multi-Scale Kernel Modeling**
*Cheng Peng, Yutao Tang, Yifan Zhou, Nengyu Wang, Xijun Liu, Deming Li, Rama Chellappa*
arXiv preprint, 7 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.04926)]**From Chaos to Clarity: 3DGS in the Dark**
*Zhihao Li, Yufei Wang, Alex Kot, Bihan Wen*
arXiv preprint, 12 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.08300)]**Cinematic Gaussians: Real-Time HDR Radiance Fields with Depth of Field**
*Chao Wang, Krzysztof Wolski, Bernhard Kerbl, Ana Serrano, Mojtaba Bemana, Hans-Peter Seidel, Karol Myszkowski, Thomas Leimkühler*
arXiv preprint, 11 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.07329)]**Lighting Every Darkness with 3DGS: Fast Training and Real-Time Rendering for HDR View Synthesis**
*Xin Jin, Pengyi Jiao, Zheng-Peng Duan, Xingchao Yang, Chun-Le Guo, Bo Ren, Chongyi Li*
arXiv preprint, 10 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.06216)] [[Code](https://github.com/Srameo/LE3D)]**CRiM-GS: Continuous Rigid Motion-Aware Gaussian Splatting from Motion Blur Images**
*Junghe Lee, Donghyeong Kim, Dogyoon Lee, Suhwan Cho, Sangyoun Lee*
arXiv preprint, 4 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.03923)] [[Project](https://jho-yonsei.github.io/CRiM-Gaussian/)]**HDRSplat: Gaussian Splatting for High Dynamic Range 3D Scene Reconstruction from Raw Images**
*Shreyas Singh, Aryan Garg, Kaushik Mitra*
arXiv preprint, 23 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.16503)]**EaDeblur-GS: Event assisted 3D Deblur Reconstruction with Gaussian Splatting**
*Yuchen Weng, Zhengwen Shen, Ruofan Chen, Qi Wang, Jun Wang*
arXiv preprint, 18 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.13520)]**HDRGS: High Dynamic Range Gaussian Splatting**
*Jiahao Wu, Lu Xiao, Chao Wang, Rui Peng, Kaiqiang Xiong, Ronggang Wang*
arXiv preprint, 13 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.06543)]**DeRainGS: Gaussian Splatting for Enhanced Scene Reconstruction in Rainy Environments**
*Shuhong Liu, Xiang Chen, Hongming Chen, Quanfeng Xu, Mingrui Li*
arXiv preprint, 21 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.11540)]**Gaussian in the Dark: Real-Time View Synthesis From Inconsistent Dark Images Using Gaussian Splatting**
*Sheng Ye, Zhen-Hui Dong, Yubin Hu, Yu-Hui Wen, Yong-Jin Liu*
PG 2024, 17 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.09130)]**GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring**
*Dongwoo Lee, Joonkyu Park, Kyoung Mu Lee*
NeurIPS 2024, 31 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.23658)]**CoCoGaussian: Leveraging Circle of Confusion for Gaussian Splatting from Defocused Images**
*Jungho Lee, Suhwan Cho, Taeoh Kim, Ho - Deok Jang, Minhyeok Lee, Geonho Cha, Dongyoon Wee, Dogyoon Lee, Sangyoun Lee*
20 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.16028)] [[Project](https://jho-yonsei.github.io/CoCoGaussian/)] [[Code](https://github.com/Jho-Yonsei/CoCoGaussian)]## 3DGS for Reflective and Transparent Objects
**Snap-it, Tap-it, Splat-it: Tactile-Informed 3D Gaussian Splatting for Reconstructing Challenging Surfaces**
*Mauro Comi, Alessio Tonioni, Max Yang, Jonathan Tremblay, Valts Blukis, Yijiong Lin, Nathan F. Lepora, Laurence Aitchison*
arXiv preprint, 29 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.20275)]**Mirror-3DGS: Incorporating Mirror Reflections into 3D Gaussian Splatting**
*Jiarui Meng, Haijie Li, Yanmin Wu, Qiankun Gao, Shuzhou Yang, Jian Zhang, Siwei Ma*
arXiv preprint, 1 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.01168)]**RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering**
*Xianqiang Lyu, Hui Liu, Junhui Hou*
arXiv preprint, 17 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.11401)]**DeblurGS: Gaussian Splatting for Camera Motion Blur**
*Jeongtaek Oh, Jaeyoung Chung, Dongwoo Lee, Kyoung Mu Lee*
arXiv preprint, 17 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.11358)]**3D Gaussian Splatting with Deferred Reflection**
*Keyang Ye, Qiming Hou, Kun Zhou*
arXiv preprint, 29 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.18454)]**MirrorGaussian: Reflecting 3D Gaussians for Reconstructing Mirror Reflections**
*Jiayue Liu, Xiao Tang, Freeman Cheng, Roy Yang, Zhihao Li, Jianzhuang Liu, Yi Huang, Jiaqi Lin, Shiyong Liu, Xiaofei Wu, Songcen Xu, Chun Yuan*
arXiv preprint, 20 May 2024
[[arXiv](https://arxiv.org/abs/2405.11921)] [[Project](https://mirror-gaussian.github.io/)]**DC-Gaussian: Improving 3D Gaussian Splatting for Reflective Dash Cam Videos**
*Linhan Wang, Kai Cheng, Shuo Lei, Shengkun Wang, Wei Yin, Chenyang Lei, Xiaoxiao Long, Chang-Tien Lu*
arXiv preprint, 27 May 2024
[[arXiv](https://arxiv.org/abs/2405.17705)] [[Project](https://linhanwang.github.io/dcgaussian/)] [[Code](https://github.com/linhanwang/DC-Gaussian)]**RefGaussian: Disentangling Reflections from 3D Gaussian Splatting for Realistic Rendering**
*Rui Zhang, Tianyue Luo, Weidong Yang, Ben Fei, Jingyi Xu, Qingyuan Zhou, Keyi Liu, Ying He*
arXiv preprint, 9 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.05852)]**Gaussian Splatting in Mirrors: Reflection-Aware Rendering via Virtual Camera Optimization**
*Zihan Wang, Shuzhe Wang, Matias Turkulainen, Junyuan Fang, Juho Kannala*
arXiv preprint, 2 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.01614)]**Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency**
*Florian Hahlbohm, Fabian Friederichs, Tim Weyrich, Linus Franke, Moritz Kappel, Susana Castillo, Marc Stamminger, Martin Eisemann, Marcus Magnor*
arXiv preprint, 10 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.08129)] [[Project](https://fhahlbohm.github.io/htgs/)]## 3DGS Superresolution
**SRGS: Super-Resolution 3D Gaussian Splatting**
*Xiang Feng, Yongbo He, Yubo Wang, Yan Yang, Zhenzhong Kuang, Yu Jun, Jianping Fan, Jiajun ding*
ACM MM 2024, 16 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.10318)]**GaussianSR: 3D Gaussian Super-Resolution with 2D Diffusion Priors**
*Xiqian Yu, Hanxin Zhu, Tianyu He, Zhibo Chen*
arXiv preprint, 14 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.10111)] [[Project](https://chchnii.github.io/GaussianSR/)]**GaussianSR: High Fidelity 2D Gaussian Splatting for Arbitrary-Scale Image Super-Resolution**
*Jintong Hu, Bin Xia, Bin Chen, Wenming Yang, Lei Zhang*
arXiv preprint, 25 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.18046)]**SuperGS: Super-Resolution 3D Gaussian Splatting via Latent Feature Field and Gradient-guided Splitting**
*Shiyun Xie, Zhiru Wang, Yinghao Zhu, Chengwei Pan*
arXiv preprint, 3 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.02571)]## 3DGS with/for Point Cloud
**Zero-shot Point Cloud Completion Via 2D Priors**
*Tianxin Huang, Zhiwen Yan, Yuyang Zhao, Gim Hee Lee*
arXiv preprint, 10 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.06814)]**Photorealistic 3D Urban Scene Reconstruction and Point Cloud Extraction using Google Earth Imagery and Gaussian Splatting**
*Kyle Gao, Dening Lu, Hongjie He, Linlin Xu, Jonathan Li*
arXiv preprint, 17 May 2024
[[arXiv](https://arxiv.org/abs/2405.11021)]**PFGS: High Fidelity Point Cloud Rendering via Feature Splatting**
*Jiaxu Wang, Ziyi Zhang, Junhao He, Renjing Xu*
arXiv preprint, 4 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.03857)]**GaussianPainter: Painting Point Cloud into 3D Gaussians with Normal Guidance**
*Jingqiu Zhou, Lue Fan, Xuesong Chen, Linjiang Huang, Si Liu, Hongsheng Li*
AAAI 2025, 23 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.17715)]## 3DGS for CV Tasks
**3DGS-Calib: 3D Gaussian Splatting for Multimodal SpatioTemporal Calibration**
*Quentin Herau, Moussab Bennehar, Arthur Moreau, Nathan Piasco, Luis Roldao, Dzmitry Tsishkou, Cyrille Migniot, Pascal Vasseur, Cédric Demonceaux*
arXiv preprint, 18 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.11577)]**GaussReg: Fast 3D Registration with Gaussian Splatting**
*Jiahao Chang, Yinglin Xu, Yihao Li, Yuantao Chen, Xiaoguang Han*
ECCV 2024, 7 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.05254)]## 3DGS with Hardware
**Dual-Camera Smooth Zoom on Mobile Phones**
*Renlong Wu, Zhilu Zhang, Yu Yang, Wangmeng Zuo*
arXiv preprint, 7 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.04908)]**Event3DGS: Event-based 3D Gaussian Splatting for Fast Egomotion**
*Tianyi Xiong, Jiayi Wu, Botao He, Cornelia Fermuller, Yiannis Aloimonos, Heng Huang, Christopher A. Metzler*
arXiv preprint, 5 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.02972)]**E2GS: Event Enhanced Gaussian Splatting**
*Hiroyuki Deguchi, Mana Masuda, Takuya Nakabayashi, Hideo Saito*
arXiv preprint, 21 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.14978)]**SpikeGS: Reconstruct 3D scene via fast-moving bio-inspired sensors**
*Yijia Guo, Liwen Hu, Lei Ma, Tiejun Huang*
arXiv preprint, 4 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.03771)]**SpikeGS: 3D Gaussian Splatting from Spike Streams with High-Speed Camera Motion**
*Jiyuan Zhang, Kang Chen, Shiyan Chen, Yajing Zheng, Tiejun Huang, Zhaofei Yu*
arXiv preprint, 14 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.10062)]**Ev-GS: Event-based Gaussian splatting for Efficient and Accurate Radiance Field Rendering**
*Jingqian Wu, Shuo Zhu, Chutian Wang, Edmund Y. Lam*
arXiv preprint, 16 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.11343)]**IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera**
*Jian Huang, Chengrui Dong, Peidong Liu*
arXiv preprint, 10 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.08107)] [[Code](https://github.com/wu-cvgl/IncEventGS)]**EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting**
*Bohao Liao, Wei Zhai, Zengyu Wan, Tianzhu Zhang, Yang Cao, Zheng-Jun Zha*
arXiv preprint, 20 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.15392)] [[Project](https://lbh666.github.io/ef-3dgs/)]**EventSplat: 3D Gaussian Splatting from Moving Event Cameras for Real-time Rendering**
*Toshiya Yura, Ashkan Mirzaei, Igor Gilitschenski*
10 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.07293)]**SweepEvGS: Event-Based 3D Gaussian Splatting for Macro and Micro Radiance Field Rendering from a Single Sweep**
*Jingqian Wu, Shuo Zhu, Chutian Wang, Boxin Shi, Edmund Y. Lam*
16 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.11579)]## 3DGS Applications
### 3DGS Application in XR/AR
**Advancing Extended Reality with 3D Gaussian Splatting: Innovations and Prospects**
*Shi Qiu, Binzhu Xie, Qixuan Liu, Pheng-Ann Heng*
9 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.06257)]### 3DGS Application in Animal Reconstruction
**Exploring the Feasibility of Generating Realistic 3D Models of Endangered Species Using DreamGaussian: An Analysis of Elevation Angle's Impact on Model Generation**
*Selcuk Anil Karatopak, Deniz Sen*
arXiv preprint, 15 Dec 2023
[[arXiv](https://arxiv.org/abs/2312.09682)]### 3DGS Application in Medical Imaging
**EndoGaussian: Gaussian Splatting for Deformable Surgical Scene Reconstruction**
*Yifan Liu, Chenxin Li, Chen Yang, Yixuan Yuan*
arXiv preprint, 23 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.12561/)] [[Project](https://yifliu3.github.io/EndoGaussian/)] [[Code](https://github.com/yifliu3/EndoGaussian)]**Deformable Endoscopic Tissues Reconstruction with Gaussian Splatting**
*Lingting Zhu, Zhao Wang, Zhenchao Jin, Guying Lin, Lequan Yu*
arXiv preprint, 21 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.11535)] [[Code](https://github.com/HKU-MedAI/EndoGS)]**Endo-4DGS: Distilling Depth Ranking for Endoscopic Monocular Scene Reconstruction with 4D Gaussian Splatting**
*Yiming Huang, Beilei Cui, Long Bai, Ziqi Guo, Mengya Xu, Hongliang Ren*
arXiv preprint, 29 Jan 2024
[[arXiv](https://arxiv.org/abs/2401.16416)]**Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis**
*Yuanhao Cai, Yixun Liang, Jiahao Wang, Angtian Wang, Yulun Zhang, Xiaokang Yang, Zongwei Zhou, Alan Yuille*
arXiv preprint, 7 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.04116)] [[Video](https://www.youtube.com/watch?v=gDVf_Ngeghg)]**TOGS: Gaussian Splatting with Temporal Opacity Offset for Real-Time 4D DSA Rendering**
*Shuai Zhang, Huangxuan Zhao, Zhenghong Zhou, Guanjun Wu, Chuansheng Zheng, Xinggang Wang, Wenyu Liu*
arXiv preprint, 28 Mar 2024
[[arXiv](https://arxiv.org/abs/2403.19586)]**Gaussian Pancakes: Geometrically-Regularized 3D Gaussian Splatting for Realistic Endoscopic Reconstruction**
*Sierra Bonilla, Shuai Zhang, Dimitrios Psychogyios, Danail Stoyanov, Francisco Vasconcelos, Sophia Bano*
arXiv preprint, 9 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.06128)]**Novel View Synthesis for Cinematic Anatomy on Mobile and Immersive Displays**
*Simon Niedermayr, Christoph Neuhauser, Kaloian Petkov, Klaus Engel, Rüdiger Westermann*
arXiv preprint, 17 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.11285)]**HFGS: 4D Gaussian Splatting with Emphasis on Spatial and Temporal High-Frequency Components for Endoscopic Scene Reconstruction**
*Haoyu Zhao, Xingyue Zhao, Lingting Zhu, Weixi Zheng, Yongchao Xu*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.17872)]**Deform3DGS: Flexible Deformation for Fast Surgical Scene Reconstruction with Gaussian Splatting**
*Shuojue Yang, Qian Li, Daiyun Shen, Bingchen Gong, Qi Dou, Yueming Jin*
arXiv preprint, 28 May 2024
[[arXiv](https://arxiv.org/abs/2405.17835)] [[Code](https://github.com/jinlab-imvr/Deform3DGS)]**R^2-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction**
*Ruyi Zha, Tao Jun Lin, Yuanhao Cai, Jiwen Cao, Yanhao Zhang, Hongdong Li*
arXiv preprint, 31 May 2024
[[arXiv](https://arxiv.org/abs/2405.20693)]**DDGS-CT: Direction-Disentangled Gaussian Splatting for Realistic Volume Rendering**
*Zhongpai Gao, Benjamin Planche, Meng Zheng, Xiao Chen, Terrence Chen, Ziyan Wu*
arXiv preprint, 4 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.02518)]**Gaussian Representation for Deformable Image Registration**
*Jihe Li, Fabian Zhang, Xia Li, Tianhao Zhang, Ye Zhang, Joachim Buhmann*
arXiv preprint, 5 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.03394)]**LGS: A Light-weight 4D Gaussian Splatting for Efficient Surgical Scene Reconstruction**
*Hengyu Liu, Yifan Liu, Chenxin Li, Wuyang Li, Yixuan Yuan*
MICCAI 2024, 23 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.16073)] [[Project](https://lgs-endo.github.io/)] [[Code](https://github.com/CUHK-AIM-Group/LGS)]**Free-SurGS: SfM-Free 3D Gaussian Splatting for Surgical Scene Reconstruction**
*Jiaxin Guo, Jiangliu Wang, Di Kang, Wenzhen Dong, Wenting Wang, Yun-hui Liu*
MICCAI 2024, 3 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.02918)] [[Code](https://github.com/wrld/Free-SurGS)]**EndoSparse: Real-Time Sparse View Synthesis of Endoscopic Scenes using Gaussian Splatting**
*Chenxin Li, Brandon Y. Feng, Yifan Liu, Hengyu Liu, Cheng Wang, Weihao Yu, Yixuan Yuan*
MICCAI 2024, 1 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.01029)] [[Project](https://endo-sparse.github.io/)]**SurgicalGaussian: Deformable 3D Gaussians for High-Fidelity Surgical Scene Reconstruction**
*Weixing Xie, Junfeng Yao, Xianpeng Cao, Qiqin Lin, Zerui Tang, Xiao Dong, Xiaohu Guo*
arXiv preprint, 6 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.05023)] [[Project](https://surgicalgaussian.github.io/)] [[Video](https://youtu.be/oEfHfG6_Ous)] [[Code](https://github.com/SurgicalGaussian/SurgicalGaussian)]**Realistic Surgical Image Dataset Generation Based On 3D Gaussian Splatting**
*Tianle Zeng, Gerardo Loza Galindo, Junlei Hu, Pietro Valdastri, Dominic Jones*
MICCAI 2024, 20 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.14846)]**A Review of 3D Reconstruction Techniques for Deformable Tissues in Robotic Surgery**
*Mengya Xu, Ziqi Guo, An Wang, Long Bai, Hongliang Ren*
MICCAI 2024, 8 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.04426)] [[Code](https://github.com/Epsilon404/surgicalnerf)]**Free-DyGS: Camera-Pose-Free Scene Reconstruction based on Gaussian Splatting for Dynamic Surgical Videos**
*Qian Li, Shuojue Yang, Daiyun Shen, Yueming Jin*
arXiv preprint, 2 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.01003)]**Online 3D reconstruction and dense tracking in endoscopic videos**
*Michel Hayoz, Christopher Hahne, Thomas Kurmann, Max Allan, Guido Beldi, Daniel Candinas, ablo Márquez-Neila, Raphael Sznitman*
arXiv preprint, 9 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.06037)]**Seamless Augmented Reality Integration in Arthroscopy: A Pipeline for Articular Reconstruction and Guidance**
*Hongchao Shu, Mingxu Liu, Lalithkumar Seenivasan, Suxi Gu, Ping-Cheng Ku, Jonathan Knopf, Russell Taylor, Mathias Unberath*
AE-CAI 2024, 1 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.00386)]**Multi-Layer Gaussian Splatting for Immersive Anatomy Visualization**
*Constantin Kleinbeck, Hannah Schieber, Klaus Engel, Ralf Gutjahr, Daniel Roth*
arXiv preprint, 22 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.16978)]**TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography**
*Di Xu, Yang Yang, Hengjie Liu, Qihui Lyu, Martina Descovich, Dan Ruan, Ke Sheng*
arXiv preprint, 12 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.08158)]**PR-ENDO: Physically Based Relightable Gaussian Splatting for Endoscopy**
*Joanna Kaleta, Weronika Smolak-Dyżewska, Dawid Malarz, Diego Dall'Alba, Przemysław Korzeniowski, Przemysław Spurek*
19 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.12510)]### 3DGS Application in Underwater Scenario
**RecGS: Removing Water Caustic with Recurrent Gaussian Splatting**
*Tianyi Zhang, Weiming Zhi, Kaining Huang, Joshua Mangelson, Corina Barbalata, Matthew Johnson-Roberson*
arXiv preprint, 14 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.10318)]**WaterSplatting: Fast Underwater 3D Scene Reconstruction Using Gaussian Splatting**
*Huapeng Li, Wenxuan Song, Tianao Xu, Alexandre Elsig, Jonas Kulhanek*
arXiv preprint, 15 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.08206)] [[Project](https://water-splatting.github.io/)] [[Code](https://github.com/water-splatting/water-splatting)]**SeaSplat: Representing Underwater Scenes with 3D Gaussian Splatting and a Physically Grounded Image Formation Model**
*Daniel Yang, John J. Leonard, Yogesh Girdhar*
arXiv preprint, 25 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.17345)] [[Project](https://seasplat.github.io/)] [[Video](https://www.youtube.com/watch?v=iU9JWIhw5kg)]**UW-GS: Distractor-Aware 3D Gaussian Splatting for Enhanced Underwater Scene Reconstruction**
*Haoran Wang, Nantheera Anantrasirichai, Fan Zhang, David Bull*
arXiv preprint, 2 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.01517)]**NeuroPump: Simultaneous Geometric and Color Rectification for Underwater Images**
*Yue Guo, Haoxiang Liao, Haibin Ling, Bingyao Huang*
20 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.15890)]### 3DGS Application in Agriculture/Forestry Scenario
**Comparative Analysis of Novel View Synthesis and Photogrammetry for 3D Forest Stand Reconstruction and extraction of individual tree parameters**
*Guoji Tian, Chongcheng Chen, Hongyu Huang*
arXiv preprint, 8 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.05772)]**Biomass phenotyping of oilseed rape through UAV multi-view oblique imaging with 3DGS and SAM model**
*Yutao Shen, Hongyu Zhou, Xin Yang, Xuqi Lu, Ziyue Guo, Lixi Jiang, Yong He, Haiyan Cen*
arXiv preprint, 13 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.08453)]### 3DGS Application in other Areas
**WRF-GS: Wireless Radiation Field Reconstruction with 3D Gaussian Splatting**
*Chaozheng Wen, Jingwen Tong, Yingdong Hu, Zehong Lin, Jun Zhang*
INFOCOM 2025, 6 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.04832)]## 3DGS Artifact Detection
**SplatPose & Detect: Pose-Agnostic 3D Anomaly Detection**
*Mathis Kruse, Marco Rudolph, Dominik Woiwode, Bodo Rosenhahn*
CVPR 2024, 10 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.06832)]**SplatPose+: Real-time Image-Based Pose-Agnostic 3D Anomaly Detection**
*Yizhe Liu, Yan Song Hu, Yuhao Chen, John Zelek*
arXiv preprint, 15 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.12080)]**SplatOverflow: Asynchronous Hardware Troubleshooting**
*Amritansh Kwatra, Tobias Wienberg, Ilan Mandel, Ritik Batra, Peter He, Francois Guimbretiere, Thijs Roumen*
arXiv preprint, 4 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.02332)] [[Video](https://youtu.be/m4TKeBDuZkU)]## 3DGS Copyright/Safety
**GaussianStego: A Generalizable Stenography Pipeline for Generative 3D Gaussians Splatting**
*Chenxin Li, Hengyu Liu, Zhiwen Fan, Wuyang Li, Yifan Liu, Panwang Pan, Yixuan Yuan*
arXiv preprint, 1 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.01301)] [[Project](https://gaussian-stego.github.io/)]**Poison-splat: Computation Cost Attack on 3D Gaussian Splatting**
*Jiahao Lu, Yifan Zhang, Qiuhong Shen, Xinchao Wang, Shuicheng Yan*
arXiv preprint, 10 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.08190)] [[Code](https://github.com/jiahaolu97/poison-splat)]**GaussianMarker: Uncertainty-Aware Copyright Protection of 3D Gaussian Splatting**
*Xiufeng Huang, Ruiqi Li, Yiu-ming Cheung, Ka Chun Cheung, Simon See, Renjie Wan*
arXiv preprint, 31 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.23718)]**Geometry Cloak: Preventing TGS-based 3D Reconstruction from Copyrighted Images**
*Qi Song, Ziyuan Luo, Ka Chun Cheung, Simon See, Renjie Wan*
NeurIPS 2024, 30 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.22705)]**Towards More Accurate Fake Detection on Images Generated from Advanced Generative and Neural Rendering Models**
*Chengdong Dong, Vijayakumar Bhagavatula, Zhenyu Zhou, Ajay Kumar*
arXiv preprint, 13 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.08642)]**GuardSplat: Efficient and Robust Watermarking for 3D Gaussian Splatting**
*Zixuan Chen, Guangcong Wang, Jiahao Zhu, Jianhuang Lai, Xiaohua Xie*
29 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.19895)] [[Project](https://narcissusex.github.io/GuardSplat/)] [[Code](https://github.com/NarcissusEx/GuardSplat)]**Splats in Splats: Embedding Invisible 3D Watermark within Gaussian Splatting**
*Yijia Guo, Wenkai Huang, Yang Li, Gaolei Li, Hang Zhang, Liwen Hu, Jianhua Li, Tiejun Huang, Lei Ma*
4 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.03121)] [[Project](https://water-gs.github.io/)]**WATER-GS: Toward Copyright Protection for 3D Gaussian Splatting via Universal Watermarking**
*Yuqi Tan, Xiang Liu, Shuzhao Xie, Bin Chen, Shu-Tao Xia, Zhi Wang*
7 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.05695)]## 3DGS Applications in UAV/MAV
**DRAGON: Drone and Ground Gaussian Splatting for 3D Building Reconstruction**
*Yujin Ham, Mateusz Michalkiewicz, Guha Balakrishnan*
ICCP 2024, 1 Jul 2024
[[arXiv](https://arxiv.org/abs/2407.01761)]**Developing Smart MAVs for Autonomous Inspection in GPS-denied Constructions**
*Paoqiang Pan, Kewei Hu, Xiao Huang, Wei Ying, Xiaoxuan Xie, Yue Ma, Naizhong Zhang, Hanwen Kang*
arXiv preprint, 12 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.06030)]**Video2BEV: Transforming Drone Videos to BEVs for Video-based Geo-localization**
*Hao Ju, Zhedong Zheng*
20 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.13610)]**Horizon-GS: Unified 3D Gaussian Splatting for Large-Scale Aerial-to-Ground Scenes**
*Lihan Jiang, Kerui Ren, Mulin Yu, Linning Xu, Junting Dong, Tao Lu, Feng Zhao, Dahua Lin, Bo Dai*
2 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.01745)]**Extrapolated Urban View Synthesis Benchmark**
*Xiangyu Han, Zhen Jia, Boyi Li, Yan Wang, Boris Ivanovic, Yurong You, Lingjie Liu, Yue Wang, Marco Pavone, Chen Feng, Yiming Li*
6 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.05256)] [[Project](https://ai4ce.github.io/EUVS-Benchmark/)] [[Code](https://github.com/ai4ce/EUVS-Benchmark/)]**SOUS VIDE: Cooking Visual Drone Navigation Policies in a Gaussian Splatting Vacuum**
*JunEn Low, Maximilian Adang, Javier Yu, Keiko Nagami, Mac Schwager*
20 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.16346)]## 3DGS Applications in Satellite Images
**Reconstructing Satellites in 3D from Amateur Telescope Images**
*Zhiming Chang, Boyang Liu, Yifei Xia, Youming Guo, Boxin Shi, He Sun*
arXiv preprint, 29 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.18394)]**SatSplatYOLO: 3D Gaussian Splatting-based Virtual Object Detection Ensembles for Satellite Feature Recognition**
*Van Minh Nguyen, Emma Sandidge, Trupti Mahendrakar, Ryan T. White*
arXiv preprint, 4 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.02533)]## 3DGS Network Applications
**Embracing Radiance Field Rendering in 6G: Over-the-Air Training and Inference with 3D Contents**
*Guanlin Wu, Zhonghao Lyu, Juyong Zhang, Jie Xu*
arXiv preprint, 20 May 2024
[[arXiv](https://arxiv.org/abs/2405.12155)]## 3DGS for Acoustic
**AV-GS: Learning Material and Geometry Aware Priors for Novel View Acoustic Synthesis**
*Swapnil Bhosale, Haosen Yang, Diptesh Kanojia, Jiankang Deng, Xiatian Zhu*
arXiv preprint, 13 Jun 2024
[[arXiv](https://arxiv.org/abs/2406.08920)]## 3DGS with Panorama
**LayerPano3D: Layered 3D Panorama for Hyper-Immersive Scene Generation**
*Shuai Yang, Jing Tan, Mengchen Zhang, Tong Wu, Yixuan Li, Gordon Wetzstein, Ziwei Liu, Dahua Lin*
arXiv preprint, 23 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.13252)] [[Project](https://ys-imtech.github.io/projects/LayerPano3D/)]**Pano2Room: Novel View Synthesis from a Single Indoor Panorama**
*Guo Pu, Yiming Zhao, Zhouhui Lian*
Siggraph Asia 2024, 21 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.11413)] [[Code](https://github.com/TrickyGo/Pano2Room)]## 3DGS with Thermal
:fire: **Thermal3D-GS: Physics-induced 3D Gaussians for Thermal Infrared Novel-view Synthesis**
*Qian Chen, Shihao Shu, Xiangzhi Bai*
ECCV 2024, 12 Sep 2024Abstract
Novel-view synthesis based on visible light has been extensively studied. In comparison to visible light imaging, thermal infrared imaging offers the advantage of all-weather imaging and strong penetration, providing increased possibilities for reconstruction in nighttime and adverse weather scenarios. However, thermal infrared imaging is influenced by physical characteristics such as atmospheric transmission effects and thermal conduction, hindering the precise reconstruction of intricate details in thermal infrared scenes, manifesting as issues of floaters and indistinct edge features in synthesized images. To address these limitations, this paper introduces a physics-induced 3D Gaussian splatting method named Thermal3D-GS. Thermal3D-GS begins by modeling atmospheric transmission effects and thermal conduction in three-dimensional media using neural networks. Additionally, a temperature consistency constraint is incorporated into the optimization objective to enhance the reconstruction accuracy of thermal infrared images. Furthermore, to validate the effectiveness of our method, the first large-scale benchmark dataset for this field named Thermal Infrared Novel-view Synthesis Dataset (TI-NSD) is created. This dataset comprises 20 authentic thermal infrared video scenes, covering indoor, outdoor, and UAV(Unmanned Aerial Vehicle) scenarios, totaling 6,664 frames of thermal infrared image data. Based on this dataset, this paper experimentally verifies the effectiveness of Thermal3D-GS. The results indicate that our method outperforms the baseline method with a 3.03 dB improvement in PSNR and significantly addresses the issues of floaters and indistinct edge features present in the baseline method. Our dataset and codebase will be released in \href{this https URL}{\textcolor{red}{Thermal3DGS}}.[[arXiv](https://arxiv.org/abs/2409.08042)] [[Code](https://github.com/mzzcdf/Thermal3DGS)]
**ThermalGaussian: Thermal 3D Gaussian Splatting**
*Rongfeng Lu, Hangyu Chen, Zunjie Zhu, Yuhang Qin, Ming Lu, Le Zhang, Chenggang Yan, Anke Xue*
arXiv preprint, 11 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.07200)]## 3DGS with Fisheye Camera
**Fisheye-GS: Lightweight and Extensible Gaussian Splatting Module for Fisheye Cameras**
*Zimu Liao, Siyan Chen, Rong Fu, Yi Wang, Zhongling Su, Hao Luo, Li Ma, Linning Xu, Bo Dai, Hengjie Li, Zhilin Pei, Xingcheng Zhang*
arXiv preprint, 7 Sep 2024
[[arXiv](https://arxiv.org/abs/2409.04751)]## 3DGS with Compressive Sensing
**SCIGS: 3D Gaussians Splatting from a Snapshot Compressive Image**
*Zixu Wang, Hao Yang, Yu Guo, Fei Wang*
19 Nov 2024
[[arXiv](https://arxiv.org/abs/2411.12471)]## Other NVS Methods
**LVSM: A Large View Synthesis Model with Minimal 3D Inductive Bias**
*Haian Jin, Hanwen Jiang, Hao Tan, Kai Zhang, Sai Bi, Tianyuan Zhang, Fujun Luan, Noah Snavely, Zexiang Xu*
arXiv preprint, 22 Oct 2024
[[arXiv](https://arxiv.org/abs/2410.17242)] [[Project](https://haian-jin.github.io/projects/LVSM/)]**Exploring Dynamic Novel View Synthesis Technologies for Cinematography**
*Adrian Azzarelli, Nantheera Anantrasirichai, David R Bul*
23 Dec 2024
[[arXiv](https://arxiv.org/abs/2412.17532)]## Other Upstream work(Occasionally Came Across)
**FlowMap: High-Quality Camera Poses, Intrinsics, and Depth via Gradient Descent**
*Cameron Smith, David Charatan, Ayush Tewari, Vincent Sitzmann*
arXiv preprint, 23 Apr 2024
[[arXiv](https://arxiv.org/abs/2404.15259)]## Other Surveys
**Learning-based Multi-View Stereo: A Survey**
*Fangjinhua Wang, Qingtian Zhu, Di Chang, Quankai Gao, Junlin Han, Tong Zhang, Richard Hartley, Marc Pollefeys*
arXiv preprint, 27 Aug 2024
[[arXiv](https://arxiv.org/abs/2408.15235)]## Contributors
Thanks to the community and hoping more and more people are joining us and submit commits and PRs!
Made with [contributors-img](https://contrib.rocks).
## License
CC-0