Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yantonov/ml-docker
Playground for common python ml libraries
https://github.com/yantonov/ml-docker
anaconda catboost docker docker-image jupiter numpy pyplot python scipy sklearn
Last synced: 15 days ago
JSON representation
Playground for common python ml libraries
- Host: GitHub
- URL: https://github.com/yantonov/ml-docker
- Owner: yantonov
- Created: 2017-11-06T08:59:50.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2024-08-20T12:13:12.000Z (3 months ago)
- Last Synced: 2024-08-20T14:12:43.189Z (3 months ago)
- Topics: anaconda, catboost, docker, docker-image, jupiter, numpy, pyplot, python, scipy, sklearn
- Language: Makefile
- Homepage:
- Size: 91.8 KB
- Stars: 1
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
These scripts help to use python machine learning libraries through docker images.
This is just a playground.
For the specific task, you may choose a specific set of packages and create a smaller image.Docker file provides:
1. python 3
2. [anaconda](https://anaconda.org/anaconda/python)
3. [jupiter](http://jupyter.org/)
4. [jupiterlab](https://jupyterlab.readthedocs.io/en/stable/)Some additional libraries:
[Pip packages](https://github.com/yantonov/ml-docker/blob/master/docker/files/requirements.txt)Usage:
Add repository to PATH variable (or create alias/shortcut for run.sh script).
Run jupiter notebook:
```bash
run.sh notebook
```Run jupiter lab:
```bash
run.sh lab
# or
run.sh
```After that you can connect to notebook at localhost:8888, current working directory will be mounted also.
Links:
1. [Docker hub](https://hub.docker.com/r/yantonov/ml/)
2. [Repository](https://github.com/yantonov/anaconda-docker) of the base image.