Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yanx27/3DGNN_pytorch
3D Graph Neural Networks for RGBD Semantic Segmentation
https://github.com/yanx27/3DGNN_pytorch
gnns point-cloud pytorch rgbd segmentation
Last synced: 3 months ago
JSON representation
3D Graph Neural Networks for RGBD Semantic Segmentation
- Host: GitHub
- URL: https://github.com/yanx27/3DGNN_pytorch
- Owner: yanx27
- License: mit
- Created: 2018-11-25T15:08:29.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-03-16T12:55:46.000Z (almost 6 years ago)
- Last Synced: 2024-08-01T03:46:10.934Z (6 months ago)
- Topics: gnns, point-cloud, pytorch, rgbd, segmentation
- Language: Python
- Homepage:
- Size: 193 KB
- Stars: 229
- Watchers: 5
- Forks: 43
- Open Issues: 15
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# 3DGNN for RGB-D segmentation
This is the Pytorch implementation of [3D Graph Neural Networks for RGBD Semantic Segmentation](http://openaccess.thecvf.com/content_ICCV_2017/papers/Qi_3D_Graph_Neural_ICCV_2017_paper.pdf):### Data Preparation
1. Download NYU_Depth_V2 dataset from [here](https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html) and select scenes and save as `./datasets/data/nyu_depth_v2_labeled.mat`
2. Transfer depth images to hha by yourself from [here](https://github.com/charlesCXK/Depth2HHA) and save in `./datasets/data/hha/`.### Emviroment
Required CUDA (8.0) + pytorch 0.4.1