Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yao8839836/kg-bert

KG-BERT: BERT for Knowledge Graph Completion
https://github.com/yao8839836/kg-bert

bert knowledge-graph

Last synced: 6 days ago
JSON representation

KG-BERT: BERT for Knowledge Graph Completion

Awesome Lists containing this project

README

        

# KG-BERT: BERT for Knowledge Graph Completion

The repository is modified from [pytorch-pretrained-BERT](https://github.com/huggingface/pytorch-pretrained-BERT) and tested on Python 3.5+.

## Installing requirement packages

```bash
pip install -r requirements.txt
```

## Data

(1) The benchmark knowledge graph datasets are in ./data.

(2) entity2text.txt or entity2textlong.txt in each dataset contains entity textual sequences.

(3) relation2text.txt in each dataset contains relation textual sequences.

## Reproducing results

### 1. Triple Classification

#### WN11

```shell
python run_bert_triple_classifier.py
--task_name kg
--do_train
--do_eval
--do_predict
--data_dir ./data/WN11
--bert_model bert-base-uncased
--max_seq_length 20
--train_batch_size 32
--learning_rate 5e-5
--num_train_epochs 3.0
--output_dir ./output_WN11/
--gradient_accumulation_steps 1
--eval_batch_size 512
```

#### FB13

```shell
python run_bert_triple_classifier.py
--task_name kg
--do_train
--do_eval
--do_predict
--data_dir ./data/FB13
--bert_model bert-base-cased
--max_seq_length 200
--train_batch_size 32
--learning_rate 5e-5
--num_train_epochs 3.0
--output_dir ./output_FB13/
--gradient_accumulation_steps 1
--eval_batch_size 512
```

### 2. Relation Prediction

#### FB15K

```shell
python3 run_bert_relation_prediction.py
--task_name kg
--do_train
--do_eval
--do_predict
--data_dir ./data/FB15K
--bert_model bert-base-cased
--max_seq_length 25
--train_batch_size 32
--learning_rate 5e-5
--num_train_epochs 20.0
--output_dir ./output_FB15K/
--gradient_accumulation_steps 1
--eval_batch_size 512
```

### 3. Link Prediction

#### WN18RR

```shell
python3 run_bert_link_prediction.py
--task_name kg
--do_train
--do_eval
--do_predict
--data_dir ./data/WN18RR
--bert_model bert-base-cased
--max_seq_length 50
--train_batch_size 32
--learning_rate 5e-5
--num_train_epochs 5.0
--output_dir ./output_WN18RR/
--gradient_accumulation_steps 1
--eval_batch_size 5000
```

#### UMLS

```shell
python3 run_bert_link_prediction.py
--task_name kg
--do_train
--do_eval
--do_predict
--data_dir ./data/umls
--bert_model bert-base-uncased
--max_seq_length 15
--train_batch_size 32
--learning_rate 5e-5
--num_train_epochs 5.0
--output_dir ./output_umls/
--gradient_accumulation_steps 1
--eval_batch_size 135
```

#### FB15k-237

```shell
python3 run_bert_link_prediction.py
--task_name kg
--do_train
--do_eval
--do_predict
--data_dir ./data/FB15k-237
--bert_model bert-base-cased
--max_seq_length 150
--train_batch_size 32
--learning_rate 5e-5
--num_train_epochs 5.0
--output_dir ./output_FB15k-237/
--gradient_accumulation_steps 1
--eval_batch_size 1500
```