Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yaoyao-liu/tiered-imagenet-tools
Tools for generating tieredImageNet dataset and processing batches
https://github.com/yaoyao-liu/tiered-imagenet-tools
dataset few-shot few-shot-learning meta-learning tiered-imagenet
Last synced: 13 days ago
JSON representation
Tools for generating tieredImageNet dataset and processing batches
- Host: GitHub
- URL: https://github.com/yaoyao-liu/tiered-imagenet-tools
- Owner: yaoyao-liu
- License: mit
- Created: 2019-04-29T08:32:16.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-12-15T20:13:13.000Z (almost 4 years ago)
- Last Synced: 2024-08-10T07:01:16.633Z (3 months ago)
- Topics: dataset, few-shot, few-shot-learning, meta-learning, tiered-imagenet
- Language: Python
- Homepage: https://mtl.yyliu.net/datasets
- Size: 985 KB
- Stars: 71
- Watchers: 6
- Forks: 12
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-few-shot-meta-learning - tiered-imagenet github (非官方)
README
# Tools for *tiered*ImageNet Dataset
[![LICENSE](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/y2l/tiered-imagenet-tools/blob/master/LICENSE)
This repo provides python source codes for creating *tiered*ImageNet dataset from ImageNet and the utils for generating batches during training. This repo is related to our work on few-shot learning: [Meta-Transfer Learning](https://github.com/y2l/meta-transfer-learning-tensorflow).
### Summary
* [About *tiered*ImageNet](#about-tieredImageNet)
* [Requirements](#requirements)
* [Usage](#usage)
* [Performance](#performance)
* [Acknowledgement](#acknowledgement)### About *tiered*ImageNet
The [*tiered*ImageNet](https://arxiv.org/pdf/1803.00676.pdf) dataset is a larger subset of ILSVRC-12 with 608 classes (779,165 images) grouped into 34 higher-level nodes in the ImageNet human-curated hierarchy. This set of nodes is partitioned into 20, 6, and 8 disjoint sets of training, validation, and testing nodes, and the corresponding classes form the respective meta-sets. As argued in Ren et al. (2018), this split near the root of the ImageNet hierarchy results in a more challenging, yet realistic regime with test classes that are less similar to training classes.
### Requirements
- Python 2.7 or 3.x
- numpy
- tqdm
- opencv-python
- Pillow### Usage
First, you need to download the image source files from [ImageNet website](http://www.image-net.org/challenges/LSVRC/2012/). If you already have it, you may use it directly.
```
Filename: ILSVRC2012_img_train.tar
Size: 138 GB
MD5: 1d675b47d978889d74fa0da5fadfb00e
```
Then clone the repo:
```
git clone https://github.com:y2l/tiered-imagenet-tools.git
cd tiered-imagenet-tools
```
To generate *tiered*ImageNet dataset from tar file:
```bash
python tiered_imagenet_generator.py --tar_dir [your_path_of_the_ILSVRC2012_img_train.tar]
```
To generate *tiered*ImageNet dataset from untarred folder:
```bash
python tiered_imagenet_generator.py --imagenet_dir [your_path_of_imagenet_folder]
```
If you want to resize the images to the specified resolution:
```bash
python tiered_imagenet_generator.py --tar_dir [your_path_of_the_ILSVRC2012_img_train.tar] --image_resize 100
```
P.S. In default settings, the images will be resized to 84 × 84.If you don't want to resize the images, you may set ```--image_resize 0```.
To use the ```TieredImageNetDataLoader``` class:
```python
from tiered_imagenet_dataloader import TieredImageNetDataLoaderdataloader = TieredImageNetDataLoader(shot_num=5, way_num=5, episode_test_sample_num=15)
dataloader.generate_data_list(phase='train')
dataloader.generate_data_list(phase='val')
dataloader.generate_data_list(phase='test')dataloader.load_list(phase='all')
for idx in range(total_train_step):
episode_train_img, episode_train_label, episode_test_img, episode_test_label = \
dataloader.get_batch(phase='train', idx=idx)
...
```### Acknowledgement
This repo uses the source code from the following repos:[Model-Agnostic Meta-Learning](https://github.com/cbfinn/maml)
[Optimization as a Model for Few-Shot Learning](https://github.com/gitabcworld/FewShotLearning)