Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yataobian/awesome-DrugAI
Research repo for AI aided drug discovery, de novo drug development and related topics
https://github.com/yataobian/awesome-DrugAI
List: awesome-DrugAI
ai-aided-drug-discovery de-novo-drug-design drug-ai drug-discovery
Last synced: 2 months ago
JSON representation
Research repo for AI aided drug discovery, de novo drug development and related topics
- Host: GitHub
- URL: https://github.com/yataobian/awesome-DrugAI
- Owner: yataobian
- License: mit
- Created: 2021-07-20T03:16:24.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2022-01-04T03:19:29.000Z (about 3 years ago)
- Last Synced: 2024-10-29T16:57:40.063Z (2 months ago)
- Topics: ai-aided-drug-discovery, de-novo-drug-design, drug-ai, drug-discovery
- Homepage:
- Size: 19.5 KB
- Stars: 34
- Watchers: 3
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-artificial-intelligence - awesome-DrugAI - A comprehensive list of drug AI (AI-aided de novo drug discovery) papers and materials. Will be frequently updated. (Medicine)
README
# awesome-DrugAI
[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome#readme)
> A comprehensive list of drug AI (AI-aided de novo drug discovery) papers and materials. Will be frequently updated.## Table of Contents
- [Main Applications](#main-applications)
- [Papers (Topic-wise, Reverse Chronological Order)](#papers-topic-wise-reverse-chronological-order))
- [Virtual screening & Docking & Molecular interaction](#virtual-screening--docking--molecular-interaction)
- [Molecular dynamics](#molecular-dynamics)
- [ADMET prediction](#admet-prediction)
- [Protein property prediction](#protein-property-prediction)
- [Protein structure prediction](#protein-structure-prediction)
- [Protein design](#protein-design)
- [Retrosynthetic analysis](#retrosynthetic-analysis)
- [Generative chemistry](#generative-chemistry)
- [Drug repurposing](#drug-repurposing)
- [Antibiotic discovery](#antibiotic-discovery)- [Tutorials & Talks & Blogs](#tutorials--talks--blogs)
- [Open Source Libraries & Platforms](#open-source-libraries--platforms)## Main Applications
- [ ] Virtual screening
- [ ] Protein structure prediction
- [ ] Retrosynthetic analysis
- [ ] Generative chemistry
- [ ] ADMET prediction
- [ ] Drug repurposing## Papers (Topic-wise, Reverse Chronological Order)
### Virtual screening & Docking & Molecular interaction
- [ ] [Ganea, O. E., Huang, X., Bunne, C., Bian, Y., Barzilay, R., Jaakkola, T., & Krause, A. (2021). \
Independent SE (3)-Equivariant Models for End-to-End Rigid Protein Docking. arXiv preprint arXiv:2111.07786.](https://arxiv.org/abs/2111.07786)### Molecular dynamics
### ADMET prediction
- [ ] [Rong, Y., Bian, Y., Xu, T., Xie, W., Wei, Y., Huang, W., & Huang, J. (2020). \
Self-supervised graph transformer on large-scale molecular data. NeurIPS 2020.](https://arxiv.org/abs/2007.02835)### Protein property prediction
### Protein structure prediction
- [ ] [Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021). \
Highly accurate protein structure prediction with AlphaFold. Nature, 1-11.](https://www.nature.com/articles/s41586-021-03819-2)- [ ] [Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., ... & Baker, D. (2021). \
Accurate prediction of protein structures and interactions using a 3-track network. Science.](https://www.biorxiv.org/content/10.1101/2021.06.14.448402v1.abstract)### Protein design
### Retrosynthetic analysis
### Generative chemistry
- [ ] [Shi, C., Luo, S., Xu, M., & Tang, J. (2021). \
Learning gradient fields for molecular conformation generation. arXiv preprint arXiv:2105.03902.](https://arxiv.org/abs/2105.03902)- [ ] [Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., & Tang, J. (2020). \
Graphaf: a flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382.](https://arxiv.org/abs/2001.09382)### Drug repurposing
- [ ] [Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., ... & Pirmohamed, M. (2019). \
Drug repurposing: progress, challenges and recommendations. Nature reviews Drug discovery, 18(1), 41-58.](https://www.nature.com/articles/nrd.2018.168/boxes/bx5)### Antibiotic discovery
- [ ] [Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., ... & Collins, J. J. (2020). \
A deep learning approach to antibiotic discovery. Cell, 180(4), 688-702.](https://www.sciencedirect.com/science/article/pii/S0092867420301021)## Tutorials & Talks & Blogs
- [ ] [Jian Tang, Fei Wang, Feixiong Cheng. (2021). \
AAAI 2021 Tutorial Artificial Intelligence for Drug Discovery](https://deepgraphlearning.github.io/DrugTutorial_AAAI2021/)## Open Source Libraries & Platforms
- [ ] [Tencent Holdings Ltd. (2020). \
The iDrug platform.](https://drug.ai.tencent.com/en)