Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ybabakhin/topcoder_torque
7th place solution to Topcoder's "Predict the torque from the bolt tightening sound" challenge
https://github.com/ybabakhin/topcoder_torque
audio-processing convolutional-neural-networks deep-learning pytorch pytorch-lightning
Last synced: about 6 hours ago
JSON representation
7th place solution to Topcoder's "Predict the torque from the bolt tightening sound" challenge
- Host: GitHub
- URL: https://github.com/ybabakhin/topcoder_torque
- Owner: ybabakhin
- Created: 2021-01-15T15:19:09.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-04-01T09:26:29.000Z (over 3 years ago)
- Last Synced: 2024-11-19T14:29:11.451Z (1 day ago)
- Topics: audio-processing, convolutional-neural-networks, deep-learning, pytorch, pytorch-lightning
- Language: Python
- Homepage:
- Size: 93.8 KB
- Stars: 2
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# 7th place solution to Topcoder's "Predict the torque from the bolt tightening sound" challenge
[Competition website](https://www.topcoder.com/challenges/07596fc0-961b-471b-aca9-0932501ef594)In this problem, one is given an audio file containing the sound made while bolting steel material on a construction site. The code should read the audio file and predict the torque value of it.
## Instructions to run the code
### System Requirements
The following system requirements should be satisfied:
* OS: Ubuntu 16.04
* Python: 3.6
* CUDA: 10.1
* cudnn: 7
* Docker### Environment Setup
1. Build a docker image: `docker build -t topcoder .`
2. Start a docker container:
```
docker run --rm --gpus all --shm-size 16G \
-v /path/to/train/audios:/data/input/train \
-v /path/to/train/labels:/data/gt/train \
-v /path/to/save/models:/tmp \
-v /path/to/test/audios:/data/input/pred \
-v /path/to/test/predictions:/data/output/pred \
-it topcoder
```### Build the Model
1. Use `/code/train.sh` to train the model
1. Use `/code/test.sh` to make the inference