Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yfletberliac/rlss-2019
Materials for the Practical Sessions of the Reinforcement Learning Summer School 2019: Bandits, RL & Deep RL (PyTorch).
https://github.com/yfletberliac/rlss-2019
bandits education google-colab ipynb materials notebooks reinforcement-learning school tutorial
Last synced: about 1 month ago
JSON representation
Materials for the Practical Sessions of the Reinforcement Learning Summer School 2019: Bandits, RL & Deep RL (PyTorch).
- Host: GitHub
- URL: https://github.com/yfletberliac/rlss-2019
- Owner: yfletberliac
- Created: 2019-05-30T13:35:40.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-08-21T13:35:49.000Z (about 5 years ago)
- Last Synced: 2024-09-27T23:41:03.573Z (about 2 months ago)
- Topics: bandits, education, google-colab, ipynb, materials, notebooks, reinforcement-learning, school, tutorial
- Language: Jupyter Notebook
- Homepage: https://rlss.inria.fr/program/
- Size: 7.34 MB
- Stars: 87
- Watchers: 10
- Forks: 42
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# RLSS 2019: Pratical Sessions
## Setup and Installation
Two choices are available to you:
- running the notebooks on [Google Colab](https://colab.research.google.com) :orange_book: if you want to take advantage of the GPU acceleration it offers;
- running the notebooks elsewhere (locally or on a server).##### Google Colab
It has it's own VM so you only have to install the necessary packages from inside the notebooks.
##### Elsewhere
You can use the `rlss2019-docker` image. [Here](setup.md) you'll find the instructions for installing and running the `rlss2019-docker` image on Linux, MacOS or Windows.
## Materials### Bandits
- [Stochastic Bandits](labs/MAB.Bandits.ipynb) [:orange_book:](https://colab.research.google.com/github/yfletberliac/rlss-2019/blob/master/labs/MAB.Bandits.ipynb)
- [Recommender Systems](labs/MAB.RecoSystems.ipynb) [:orange_book:](https://colab.research.google.com/github/yfletberliac/rlss-2019/blob/master/labs/MAB.RecoSystems.ipynb)### Reinforcement Learning
- [Dynamic Programming + QLearning + SARSA](labs/RL.DP+QLearning+SARSA.ipynb) [:orange_book:](https://colab.research.google.com/github/yfletberliac/rlss-2019/blob/master/labs/RL.DP%2BQLearning%2BSARSA.ipynb)
### Deep Reinforcement Learning
- [REINFORCE + A2C](labs/DRL.01.REINFORCE+A2C.ipynb) [:orange_book:](https://colab.research.google.com/github/yfletberliac/rlss-2019/blob/master/labs/DRL.01.REINFORCE%2BA2C.ipynb)
- [DQN](labs/DRL.02.DQN.ipynb) [:orange_book:](https://colab.research.google.com/github/yfletberliac/rlss-2019/blob/master/labs/DRL.02.DQN.ipynb)
- [Model-Based](labs/DRL.03.ModelBased.ipynb) [:orange_book:](https://colab.research.google.com/github/yfletberliac/rlss-2019/blob/master/labs/DRL.03.ModelBased.ipynb)### Final Project
- [Intro](labs/final_project/ptan_intro.ipynb) [:orange_book:](https://colab.research.google.com/github/yfletberliac/rlss-2019/blob/master/labs/final_project/ptan_intro.ipynb)
- [TextWorld](labs/final_project/TextWorld.ipynb) [:orange_book:](https://colab.research.google.com/github/yfletberliac/rlss-2019/blob/master/labs/final_project/TextWorld.ipynb)
- [MiniWoB](labs/final_project/MiniWoB)## Misc./Known issues
You are running Windows and want to install a Virtual Machine running Ubuntu 18.04? [Here](ubuntu-virtual-box.md) is a tutorial.
You may also want to directly [install](https://tutorials.ubuntu.com/tutorial/tutorial-ubuntu-on-windows#0) the Ubuntu terminal on Windows 10.## Contributors
- Raphaël Avalos
- Geoffrey Cideron
- [Omar Darwiche Domingues](https://omardrwch.github.io/)
- [Yannis Flet-Berliac](https://ynns.io/)
- [Emilie Kaufmann](http://chercheurs.lille.inria.fr/ekaufman/)
- [Max Lapan](https://medium.com/@shmuma)
- [Edouard Leurent](http://www.edouardleurent.com/)
- [Odalric-Ambrym Maillard](http://odalricambrymmaillard.neowordpress.fr/)
- [Jérémie Mary](http://www.grappa.univ-lille3.fr/~mary/)
- [Mathieu Seurin](https://sites.google.com/view/mathieu-seurin/)