Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yihuang/cprotobuf

protocol buffer implemented in cython
https://github.com/yihuang/cprotobuf

Last synced: about 1 month ago
JSON representation

protocol buffer implemented in cython

Awesome Lists containing this project

README

        

A minimal fast protobuf implementation with cython.
Benchmark shows that it's much faster than google official expremental cpp-python implementation.

I've been using it in production since 2013, only tested with python2.7, feedback on other python release is welcome.

Benchmark
=========

.. code-block:: bash

$ ./setup.py build_ext --inplace
$ cd benchmark
$ ./bench.sh
encode[google official pure python]:
10 loops, best of 3: 68.8 msec per loop
encode[google official cpp python]:
100 loops, best of 3: 19.4 msec per loop
encode[py-protobuf][cprotobuf]:
100 loops, best of 3: 3.58 msec per loop
decode[google official pure python]:
10 loops, best of 3: 47.5 msec per loop
decode[google official cpp python]:
100 loops, best of 3: 4.55 msec per loop
decode[py-protobuf][cprotobuf]:
100 loops, best of 3: 3.98 msec per loop

Tutorial
========

Use plugin
----------

You write a ``person.proto`` file like this:

.. code-block:: protobuf

package foo;

message Person {
required int32 id = 1;
required string name = 2;
optional string email = 3;
}

And a ``people.proto`` file like this:

.. code-block:: protobuf

package foo;
import "person.proto";

message People {
repeated Person people = 1;
}

Then you compile it with provided plugin:

.. code-block:: bash

$ protoc --cprotobuf_out=. person.proto people.proto

If you have trouble to run a protobuf plugin like on windows, you can directly run ``protoc-gen-cprotobuf`` like this:

.. code-block:: bash

$ protoc -ofoo.pb person.proto people.proto
$ protoc-gen-cprotobuf foo.pb -d .

Then you get a python module ``foo_pb.py`` , cprotobuf generate a python module for each package rather than each protocol file.

The generated code is quite readable:

.. code-block:: python

# coding: utf-8
from cprotobuf import ProtoEntity, Field
# file: person.proto
class Person(ProtoEntity):
id = Field('int32', 1)
name = Field('string', 2)
email = Field('string', 3, required=False)

# file: people.proto
class People(ProtoEntity):
people = Field(Person, 1, repeated=True)

Actually, if you only use python, you can write this python module, avoid code generation.

The API
-------

Now, you have this lovely python module, how to parse and serialize messages?

When design this package, We try to minimise the effort of migration, so we keep the names of api akin to protocol buffer's.

.. note::

Since this is no need to reuse a message instance and call ``Clear`` on it in python, It don't provide ``Clear`` api,
so ``ParseFromString`` is more like ``MergeFromString`` in official implementation, because it don't call ``Clear`` at first.

encode/decode
~~~~~~~~~~~~~

.. code-block:: python

>>> from foo_pb import Person, People
>>> msg = People()
>>> msg.people.add(
... id = 1,
... name = 'jim',
... email = '[email protected]',
... )
>>> s = msg.SerializeToString()
>>> msg2 = People()
>>> msg2.ParseFromString(s)
>>> len(msg2)
1
>>> msg2.people[0].name
'jim'

reflection
~~~~~~~~~~

.. code-block:: python

>>> from foo_pb import Person, People
>>> dir(Person._fields[0])
['__class__', '__delattr__', '__doc__', '__format__', '__get__', '__getattribute__', '__hash__', '__init__', '__new__', '__pyx_vtable__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'index', 'name', 'packed', 'repeated', 'required', 'wire_type']
>>> Person._fields[0].name
'email'
>>> Person._fieldsmap
{1: , 2: , 3: }
>>> Person._fieldsmap_by_name
{'email': , 'name': , 'id': }

repeated container
~~~~~~~~~~~~~~~~~~

We use ``RepeatedContainer`` to represent repeated field, ``RepeatedContainer`` is inherited from ``list``, so you can manipulate it like a ``list``, or with apis like google's implementation.

.. code-block:: python

>>> from foo_pb import Person, People
>>> msg = People()
>>> msg.people.add(
... id = 1,
... name = 'jim',
... email = '[email protected]',
... )
>>> p = msg.people.add()
>>> p.id = 2
>>> p.name = 'jake'
>>> p.email = '[email protected]'
>>> p2 = Person(id=3, name='lucy', email='[email protected]')
>>> msg.people.append(p2)
>>> msg.people.append({
... 'id' : 4,
... 'name' : 'lily',
... 'email' : '[email protected]',
... })

encode raw data fast
~~~~~~~~~~~~~~~~~~~~

If you already have your messages represented as ``list`` and ``dict``, you can encode it without constructing intermidiate objects, getting ride of a lot of overhead:

.. code-block:: python

>>> from cprotobuf import encode_data
>>> from foo_pb import Person, People
>>> s = encode_data(People, [
... { 'id': 1, 'name': 'tom', 'email': '[email protected]' }
... ])
>>> msg = People()
>>> msg.ParseFromString(s)
>>> msg.people[0].name
'tom'

Utility APIs
------------

.. code-block:: python

>>> from cprotobuf import encode_primitive, decode_primitive
>>> encode_primitive('uint64', 10)
bytearray(b'\x01')
>>> decode_primitive(b'\n', 'uint64')
(10, 1)

Run Tests
=========

.. code-block::

$ nosetests