Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yingkaisha/keras-unet-collection
The Tensorflow, Keras implementation of U-net, V-net, U-net++, UNET 3+, Attention U-net, R2U-net, ResUnet-a, U^2-Net, TransUNET, and Swin-UNET with optional ImageNet-trained backbones.
https://github.com/yingkaisha/keras-unet-collection
attention-unet backbone imagenet pypi r2u-net resunet swinunet tensorflow transunet u2net unet unet-plusplus unet-threeplus vnet
Last synced: 3 days ago
JSON representation
The Tensorflow, Keras implementation of U-net, V-net, U-net++, UNET 3+, Attention U-net, R2U-net, ResUnet-a, U^2-Net, TransUNET, and Swin-UNET with optional ImageNet-trained backbones.
- Host: GitHub
- URL: https://github.com/yingkaisha/keras-unet-collection
- Owner: yingkaisha
- License: mit
- Created: 2020-12-21T19:16:34.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2023-02-22T08:58:53.000Z (almost 2 years ago)
- Last Synced: 2025-01-11T14:04:44.373Z (10 days ago)
- Topics: attention-unet, backbone, imagenet, pypi, r2u-net, resunet, swinunet, tensorflow, transunet, u2net, unet, unet-plusplus, unet-threeplus, vnet
- Language: Python
- Homepage:
- Size: 959 KB
- Stars: 678
- Watchers: 13
- Forks: 185
- Open Issues: 29
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
# keras-unet-collection
[![PyPI version](https://badge.fury.io/py/keras-unet-collection.svg)](https://badge.fury.io/py/keras-unet-collection)
[![PyPI license](https://img.shields.io/pypi/l/keras-unet-collection.svg)](https://pypi.org/project/keras-unet-collection/)
[![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://github.com/yingkaisha/keras-unet-collection/graphs/commit-activity)[![DOI](https://zenodo.org/badge/323426984.svg)](https://zenodo.org/badge/latestdoi/323426984)
The `tensorflow.keras` implementation of U-net, V-net, U-net++, UNET 3+, Attention U-net, R2U-net, ResUnet-a, U^2-Net, TransUNET, and Swin-UNET with optional ImageNet-trained backbones.
----------
`keras_unet_collection.models` contains functions that configure keras models with hyper-parameter options.
* Pre-trained ImageNet backbones are supported for U-net, U-net++, UNET 3+, Attention U-net, and TransUNET.
* Deep supervision is supported for U-net++, UNET 3+, and U^2-Net.
* See the [User guide](https://github.com/yingkaisha/keras-unet-collection/blob/main/examples/user_guide_models.ipynb) for other options and use cases.| `keras_unet_collection.models` | Name | Reference |
|:---------------|:----------------|:----------------|
| `unet_2d` | U-net | [Ronneberger et al. (2015)](https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28) |
| `vnet_2d` | V-net (modified for 2-d inputs) | [Milletari et al. (2016)](https://arxiv.org/abs/1606.04797) |
| `unet_plus_2d` | U-net++ | [Zhou et al. (2018)](https://link.springer.com/chapter/10.1007/978-3-030-00889-5_1) |
| `r2_unet_2d` | R2U-Net | [Alom et al. (2018)](https://arxiv.org/abs/1802.06955) |
| `att_unet_2d` | Attention U-net | [Oktay et al. (2018)](https://arxiv.org/abs/1804.03999) |
| `resunet_a_2d` | ResUnet-a | [Diakogiannis et al. (2020)](https://doi.org/10.1016/j.isprsjprs.2020.01.013) |
| `u2net_2d` | U^2-Net | [Qin et al. (2020)](https://arxiv.org/abs/2005.09007) |
| `unet_3plus_2d` | UNET 3+ | [Huang et al. (2020)](https://arxiv.org/abs/2004.08790) |
| `transunet_2d` | TransUNET | [Chen et al. (2021)](https://arxiv.org/abs/2102.04306) |
| `swin_unet_2d` | Swin-UNET | [Hu et al. (2021)](https://arxiv.org/abs/2105.05537) |**Note**: the two Transformer models are incompatible with `Numpy 1.20`; `NumPy 1.19.5` is recommended.
----------
` keras_unet_collection.base` contains functions that build the base architecture (i.e., without model heads) of Unet variants for model customization and debugging.
| ` keras_unet_collection.base` | Notes |
|:-----------------------------------|:------|
| `unet_2d_base`, `vnet_2d_base`, `unet_plus_2d_base`, `unet_3plus_2d_base`, `att_unet_2d_base`, `r2_unet_2d_base`, `resunet_a_2d_base`, `u2net_2d_base`, `transunet_2d_base`, `swin_unet_2d_base` | Functions that accept an input tensor and hyper-parameters of the corresponded model, and produce output tensors of the base architecture. |----------
`keras_unet_collection.activations` and `keras_unet_collection.losses` provide additional activation layers and loss functions.
| `keras_unet_collection.activations` | Name | Reference |
|:--------|:----------------|:----------------|
| `GELU` | Gaussian Error Linear Units (GELU) | [Hendrycks et al. (2016)](https://arxiv.org/abs/1606.08415) |
| `Snake` | Snake activation | [Liu et al. (2020)](https://arxiv.org/abs/2006.08195) || `keras_unet_collection.losses` | Name | Reference |
|:----------------|:----------------|:----------------|
| `dice` | Dice loss | [Sudre et al. (2017)](https://link.springer.com/chapter/10.1007/978-3-319-67558-9_28) |
| `tversky` | Tversky loss | [Hashemi et al. (2018)](https://ieeexplore.ieee.org/abstract/document/8573779) |
| `focal_tversky` | Focal Tversky loss | [Abraham et al. (2019)](https://ieeexplore.ieee.org/abstract/document/8759329) |
| `ms_ssim` | Multi-scale Structural Similarity Index loss | [Wang et al. (2003)](https://ieeexplore.ieee.org/abstract/document/1292216) |
| `iou_seg` | Intersection over Union (IoU) loss for segmentation | [Rahman and Wang (2016)](https://link.springer.com/chapter/10.1007/978-3-319-50835-1_22) |
| `iou_box` | (Generalized) IoU loss for object detection | [Rezatofighi et al. (2019)](https://openaccess.thecvf.com/content_CVPR_2019/html/Rezatofighi_Generalized_Intersection_Over_Union_A_Metric_and_a_Loss_for_CVPR_2019_paper.html) |
| `triplet_1d` | Semi-hard triplet loss (experimental) | |
| `crps2d_tf` | CRPS loss (experimental) | |# Installation and usage
```pip install keras-unet-collection```
```python
from keras_unet_collection import models
# e.g. models.unet_2d(...)
```
* **Note**: Currently supported backbone models are: `VGG[16,19]`, `ResNet[50,101,152]`, `ResNet[50,101,152]V2`, `DenseNet[121,169,201]`, and `EfficientNetB[0-7]`. See [Keras Applications](https://keras.io/api/applications/) for details.* **Note**: Neural networks produced by this package may contain customized layers that are not part of the Tensorflow. It is reommended to save and load model weights.
* [Changelog](https://github.com/yingkaisha/keras-unet-collection/blob/main/CHANGELOG.md)
# Examples
* Jupyter notebooks are provided as [examples](https://github.com/yingkaisha/keras-unet-collection/tree/main/examples):
* Attention U-net with VGG16 backbone [[link]](https://github.com/yingkaisha/keras-unet-collection/blob/main/examples/human-seg_atten-unet-backbone_coco.ipynb).
* UNET 3+ with deep supervision, classification-guided module, and hybrid loss [[link]](https://github.com/yingkaisha/keras-unet-collection/blob/main/examples/segmentation_unet-three-plus_oxford-iiit.ipynb).* Vision-Transformer-based examples are in progress, and available at [**keras-vision-transformer**](https://github.com/yingkaisha/keras-vision-transformer)
# Dependencies
* TensorFlow 2.5.0, Keras 2.5.0, Numpy 1.19.5.
* (Optional for examples) Pillow, matplotlib, etc.
# Overview
U-net is a convolutional neural network with encoder-decoder architecture and skip-connections, loosely defined under the concept of "fully convolutional networks." U-net was originally proposed for the semantic segmentation of medical images and is modified for solving a wider range of gridded learning problems.
U-net and many of its variants take three or four-dimensional tensors as inputs and produce outputs of the same shape. One technical highlight of these models is the skip-connections from downsampling to upsampling layers, which benefit the reconstruction of high-resolution, gridded outputs.
# Contact
Yingkai (Kyle) Sha <> <>
# License
[MIT License](https://github.com/yingkaisha/keras-unet/blob/main/LICENSE)
# Citation
* Sha, Y., 2021: Keras-unet-collection. GitHub repository, accessed 4 September 2021, https://doi.org/10.5281/zenodo.5449801
```
@misc{keras-unet-collection,
author = {Sha, Yingkai},
title = {Keras-unet-collection},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/yingkaisha/keras-unet-collection}},
doi = {10.5281/zenodo.5449801}
}
```