Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yixuan/LBFGSpp

A header-only C++ library for L-BFGS and L-BFGS-B algorithms
https://github.com/yixuan/LBFGSpp

l-bfgs l-bfgs-b lbfgs-solver lbfgsb-solver limited-memory optimization

Last synced: about 1 month ago
JSON representation

A header-only C++ library for L-BFGS and L-BFGS-B algorithms

Awesome Lists containing this project

README

        

# LBFGS++ LBFGS++

> **UPDATE on 2020-03-06**: **LBFGS++** now includes a new L-BFGS-B solver for
> box-constrained optimization problems. Check the example below for its usage.

**LBFGS++** is a header-only C++ library that implements the Limited-memory
BFGS algorithm (L-BFGS) for unconstrained minimization problems, and a modified
version of the L-BFGS-B algorithm for box-constrained ones.

The code for the L-BFGS solver is derived and modified from the
[libLBFGS](https://github.com/chokkan/liblbfgs)
library developed by [Naoaki Okazaki](http://www.chokkan.org/).

**LBFGS++** is implemented as a header-only C++ library, whose only dependency,
[Eigen](http://eigen.tuxfamily.org/), is also header-only.

## A Quick Example

To use **LBFGS++**, one needs to first define a functor to represent the
multivariate function to be minimized. It should return the objective function
value on a vector `x` and overwrite the vector `grad` with the gradient
evaluated on `x`. For example we could define the
[Rosenbrock function](https://en.wikipedia.org/wiki/Rosenbrock_function) in the
following way:

```cpp
#include
#include
#include

using Eigen::VectorXd;
using namespace LBFGSpp;

class Rosenbrock
{
private:
int n;
public:
Rosenbrock(int n_) : n(n_) {}
double operator()(const VectorXd& x, VectorXd& grad)
{
double fx = 0.0;
for(int i = 0; i < n; i += 2)
{
double t1 = 1.0 - x[i];
double t2 = 10 * (x[i + 1] - x[i] * x[i]);
grad[i + 1] = 20 * t2;
grad[i] = -2.0 * (x[i] * grad[i + 1] + t1);
fx += t1 * t1 + t2 * t2;
}
return fx;
}
};
```

Then we just need to set up parameters, create solver object,
provide initial guess, and then run the minimization function.

```cpp
int main()
{
const int n = 10;
// Set up parameters
LBFGSParam param;
param.epsilon = 1e-6;
param.max_iterations = 100;

// Create solver and function object
LBFGSSolver solver(param);
Rosenbrock fun(n);

// Initial guess
VectorXd x = VectorXd::Zero(n);
// x will be overwritten to be the best point found
double fx;
int niter = solver.minimize(fun, x, fx);

std::cout << niter << " iterations" << std::endl;
std::cout << "x = \n" << x.transpose() << std::endl;
std::cout << "f(x) = " << fx << std::endl;

return 0;
}
```

The example can then be compiled and run.

```bash
$ g++ -I/path/to/eigen -I/path/to/lbfgspp/include -O2 example.cpp
$ ./a.out
23 iterations
x =
1 1 1 1 1 1 1 1 1 1
f(x) = 1.87948e-19
```

You can also use a different line search algorithm by providing a second template parameter
to `LBFGSSolver`. For example, the code below illustrates the bracketing line search algorithm
(contributed by [@DirkToewe](https://github.com/DirkToewe)).

```cpp
int main()
{
const int n = 10;
// Set up parameters
LBFGSParam param;
param.epsilon = 1e-6;
param.max_iterations = 100;

// Create solver and function object
LBFGSSolver solver(param);
Rosenbrock fun(n);

// Initial guess
VectorXd x = VectorXd::Zero(n);
// x will be overwritten to be the best point found
double fx;
int niter = solver.minimize(fun, x, fx);

std::cout << niter << " iterations" << std::endl;
std::cout << "x = \n" << x.transpose() << std::endl;
std::cout << "f(x) = " << fx << std::endl;

return 0;
}
```

## Box-constrained Problem

If the parameters to be optimized have simple bounds, then the
L-BFGS-**B** solver class `LBFGSBSolver` can be used.
The code is very similar to that of `LBFGSSolver`. Below is the same Rosenbrock
example, but we require that all variables should be between 2 and 4.

```cpp
#include
#include
#include // Note the different header file

using Eigen::VectorXd;
using namespace LBFGSpp;

class Rosenbrock
{
private:
int n;
public:
Rosenbrock(int n_) : n(n_) {}
double operator()(const VectorXd& x, VectorXd& grad)
{
double fx = 0.0;
for(int i = 0; i < n; i += 2)
{
double t1 = 1.0 - x[i];
double t2 = 10 * (x[i + 1] - x[i] * x[i]);
grad[i + 1] = 20 * t2;
grad[i] = -2.0 * (x[i] * grad[i + 1] + t1);
fx += t1 * t1 + t2 * t2;
}
return fx;
}
};

int main()
{
const int n = 10;
// Set up parameters
LBFGSBParam param; // New parameter class
param.epsilon = 1e-6;
param.max_iterations = 100;

// Create solver and function object
LBFGSBSolver solver(param); // New solver class
Rosenbrock fun(n);

// Bounds
VectorXd lb = VectorXd::Constant(n, 2.0);
VectorXd ub = VectorXd::Constant(n, 4.0);

// Initial guess
VectorXd x = VectorXd::Constant(n, 3.0);

// x will be overwritten to be the best point found
double fx;
int niter = solver.minimize(fun, x, fx, lb, ub);

std::cout << niter << " iterations" << std::endl;
std::cout << "x = \n" << x.transpose() << std::endl;
std::cout << "f(x) = " << fx << std::endl;

return 0;
}
```

Note that we also allow infinite values for the lower and upper bounds.
In such cases one can define `ub[i] = std::numeric_limits::infinity()`,
for example.

## Documentation

The [API reference](https://lbfgspp.statr.me/doc/) page contains the documentation
of **LBFGS++** generated by [Doxygen](https://www.doxygen.nl/).

## License

**LBFGS++** is an open source project under the MIT license.