Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yixuantt/MultiHop-RAG
Repository for "MultiHop-RAG: A Dataset for Evaluating Retrieval-Augmented Generation Across Documents" (COLM 2024)
https://github.com/yixuantt/MultiHop-RAG
Last synced: 15 days ago
JSON representation
Repository for "MultiHop-RAG: A Dataset for Evaluating Retrieval-Augmented Generation Across Documents" (COLM 2024)
- Host: GitHub
- URL: https://github.com/yixuantt/MultiHop-RAG
- Owner: yixuantt
- Created: 2024-01-23T07:00:54.000Z (12 months ago)
- Default Branch: main
- Last Pushed: 2024-11-19T09:24:38.000Z (about 2 months ago)
- Last Synced: 2024-11-19T10:27:14.804Z (about 2 months ago)
- Language: Python
- Homepage:
- Size: 7.82 MB
- Stars: 205
- Watchers: 3
- Forks: 14
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-LLMs-Datasets - https://github.com/yixuantt/MultiHop-RAG/
- StarryDivineSky - yixuantt/MultiHop-RAG - RAG:用于评估跨文档检索增强生成的数据集”(COLM 2024) 的存储库。MultiHop-RAG:一个 QA 数据集,用于评估 RAG 管道中元数据跨文档的检索和推理。它包含 2556 个查询,每个查询的证据分布在 2 到 4 个文档中。查询还涉及文档元数据,反映了实际 RAG 应用程序中常见的复杂场景。 (A01_文本生成_文本对话 / 大语言对话模型及数据)
README
# 💡 MultiHop-RAG
A Dataset for **Evaluating Retrieval-Augmented Generation Across Documents**
## 🚀 Overview
**MultiHop-RAG**: a QA dataset to evaluate retrieval and reasoning across documents with metadata in the RAG pipelines. It contains 2556 queries, with evidence for each query distributed across 2 to 4 documents. The queries also involve document metadata, reflecting complex scenarios commonly found in real-world RAG applications.📄 Paper Link **(Accepted by COLM 2024)**: [MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries](https://arxiv.org/pdf/2401.15391.pdf)
🤗 [Hugging Face dataloader](https://huggingface.co/datasets/yixuantt/MultiHopRAG)![rag.png](resource/rag.png)
## Simple Use Case
**1. For Retrieval**
Please try '**simple_retrieval.py**,' a sample use case demonstrating retrieval using this dataset.
```
pip install llama-index==0.9.40
```
```shell
# test simple retrieval and save results
python simple_retrieval.py --retriever BAAI/llm-embedder# test simple retrieval with rerank and save results
python simple_retrieval.py --retriever BAAI/llm-embedder --rerank
```**2. For QA**
Please try '**qa_llama.py**,' a sample use case demonstrating query and answer with llama using this dataset.
```
python qa_llama.py
```
## Evaluation**1. For Retrieval**: 'retrieval_evaluate.py'
**2. For QA**: 'qa_evaluate.py'
```
python retrieval_evaluate.py --file {saved_file_path}
```
## Construction PipelineFor research purposes, we open-sourced part of the code to construct the dataset. However, the current structure of the code is not very tidy. We will organize it in the future.
💡 Just For Reference: pipeline/
## Citation
```
@misc{tang2024multihoprag,
title={MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Queries},
author={Yixuan Tang and Yi Yang},
year={2024},
eprint={2401.15391},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
MultiHop-RAG is licensed under [ODC-BY](https://opendatacommons.org/licenses/by/1-0/)