https://github.com/yjacquin/fast-mcp
A Ruby Implementation of the Model Context Protocol
https://github.com/yjacquin/fast-mcp
ai llm mcp rack ruby
Last synced: 6 months ago
JSON representation
A Ruby Implementation of the Model Context Protocol
- Host: GitHub
- URL: https://github.com/yjacquin/fast-mcp
- Owner: yjacquin
- License: mit
- Created: 2025-03-10T09:17:33.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2025-03-30T17:05:00.000Z (6 months ago)
- Last Synced: 2025-03-30T17:16:15.802Z (6 months ago)
- Topics: ai, llm, mcp, rack, ruby
- Language: Ruby
- Homepage:
- Size: 156 KB
- Stars: 229
- Watchers: 5
- Forks: 2
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- awesome-mcp-servers - **fast-mcp** - A Ruby Implementation of the Model Context Protocol `ruby` `ai` `llm` `mcp` `rack` `git clone https://github.com/yjacquin/fast-mcp` (AI/ML)
- awesome-mcp-servers - **fast-mcp** - A Ruby Implementation of the Model Context Protocol `ruby` `ai` `llm` `mcp` `rack` `git clone https://github.com/yjacquin/fast-mcp` (AI/ML)
- awesome-ruby-ai - fast-mcp
README
# Fast MCP π
Connect AI models to your Ruby applications with ease
No complex protocols, no integration headaches, no compatibility issues β just beautiful, expressive Ruby code.
## π Interface your Servers with LLMs in minutes !
AI models are powerful, but they need to interact with your applications to be truly useful. Traditional approaches mean wrestling with:
- π Complex communication protocols and custom JSON formats
- π Integration challenges with different model providers
- π§© Compatibility issues between your app and AI tools
- π§ Managing the state between AI interactions and your dataFast MCP solves all these problems by providing a clean, Ruby-focused implementation of the [Model Context Protocol](https://github.com/modelcontextprotocol), making AI integration a joy, not a chore.
## β¨ Features
- π οΈ **Tools API** - Let AI models call your Ruby functions securely, with in-depth argument validation through [Dry-Schema](https://github.com/dry-rb/dry-schema).
- π **Resources API** - Share data between your app and AI models
- π **Multiple Transports** - Choose from STDIO, HTTP, or SSE based on your needs
- π§© **Framework Integration** - Works seamlessly with Rails, Sinatra or any Rack app.
- π **Authentication Support** - Secure your AI-powered endpoints with ease
- π **Real-time Updates** - Subscribe to changes for interactive applications## π What Makes FastMCP Great
```ruby
# Define tools for AI models to use
server = FastMcp::Server.new(name: 'popular-users', version: '1.0.0')# Define a tool by inheriting from FastMcp::Tool
class CreateUserTool < FastMcp::Tool
description "Create a user"
# These arguments will generate the needed JSON to be presented to the MCP Client
# And they will be validated at run time.
# The validation is based off Dry-Schema, with the addition of the description.
arguments do
required(:first_name).filled(:string).description("First name of the user")
optional(:age).filled(:integer).description("Age of the user")
required(:address).hash do
optional(:street).filled(:string)
optional(:city).filled(:string)
optional(:zipcode).filled(:string)
end
end
def call(first_name:, age: nil, address: {})
User.create!(first_name:, age:, address:)
end
end# Register the tool with the server
server.register_tool(CreateUserTool)# Share data resources with AI models by inheriting from FastMcp::Resource
class PopularUsers < FastMcp::Resource
uri "file://popular_users.json"
resource_name "Popular Users"
mime_type "application/json"
def content
JSON.generate(User.popular.limit(5).as_json)
end
end# Register the resource with the server
server.register_resource(PopularUsers)# Accessing the resource through the server
server.read_resource(PopularUsers.uri)# Notify the resource content has been updated to clients
server.notify_resource_updated(PopularUsers.uri)
```### π Fast Ruby on Rails implementation
```shell
bundle add fast-mcp
bin/rails generate fast_mcp:install
```This will add a configurable `fast_mcp.rb` initializer
```ruby
require 'fast_mcp'FastMcp.mount_in_rails(
Rails.application,
name: Rails.application.class.module_parent_name.underscore.dasherize,
version: '1.0.0',
path_prefix: '/mcp' # This is the default path prefix
# authenticate: true, # Uncomment to enable authentication
# auth_token: 'your-token', # Required if authenticate: true
) do |server|
Rails.application.config.after_initialize do
# FastMcp will automatically discover and register:
# - All classes that inherit from ApplicationTool (which uses ActionTool::Base)
# - All classes that inherit from ApplicationResource (which uses ActionResource::Base)
server.register_tools(*ApplicationTool.descendants)
server.register_resources(*ApplicationResource.descendants)
# alternatively, you can register tools and resources manually:
# server.register_tool(MyTool)
# server.register_resource(MyResource)
end
end
```
The install script will also:
- add app/resources folder
- add app/tools folder
- add app/tools/sample_tool.rb
- add app/resources/sample_resource.rb
- add ApplicationTool to inherit from
- add ApplicationResource to inherit from as well#### Rails-friendly class naming conventions
For Rails applications, FastMCP provides Rails-style class names to better fit with Rails conventions:
- `ActionTool::Base` - An alias for `FastMcp::Tool`
- `ActionResource::Base` - An alias for `FastMcp::Resource`These are automatically set up in Rails applications. You can use either naming convention in your code:
```ruby
# Using Rails-style naming:
class MyTool < ActionTool::Base
description "My awesome tool"
arguments do
required(:input).filled(:string)
end
def call(input:)
# Your implementation
end
end# Using standard FastMcp naming:
class AnotherTool < FastMcp::Tool
# Both styles work interchangeably in Rails apps
end
```When creating new tools or resources, the generators will use the Rails naming convention by default:
```ruby
# app/tools/application_tool.rb
class ApplicationTool < ActionTool::Base
# Base methods for all tools
end# app/resources/application_resource.rb
class ApplicationResource < ActionResource::Base
# Base methods for all resources
end
```### Easy Sinatra setup
I'll let you check out the dedicated [sinatra integration docs](./docs/sinatra_integration.md).## π Quick Start
### Create a Server with Tools and Resources and STDIO transport
```ruby
require 'fast_mcp'# Create an MCP server
server = FastMcp::Server.new(name: 'my-ai-server', version: '1.0.0')# Define a tool by inheriting from FastMcp::Tool
class SummarizeTool < FastMcp::Tool
description "Summarize a given text"
arguments do
required(:text).filled(:string).description("Text to summarize")
optional(:max_length).filled(:integer).description("Maximum length of summary")
end
def call(text:, max_length: 100)
# Your summarization logic here
text.split('.').first(3).join('.') + '...'
end
end# Register the tool with the server
server.register_tool(SummarizeTool)# Create a resource by inheriting from FastMcp::Resource
class StatisticsResource < FastMcp::Resource
uri "data/statistics"
resource_name "Usage Statistics"
description "Current system statistics"
mime_type "application/json"
def content
JSON.generate({
users_online: 120,
queries_per_minute: 250,
popular_topics: ["Ruby", "AI", "WebDev"]
})
end
end# Register the resource with the server
server.register_resource(StatisticsResource)# Start the server
server.start
```## π§ͺ Testing with the inspector
MCP has developed a very [useful inspector](https://github.com/modelcontextprotocol/inspector).
You can use it to validate your implementation. I suggest you use the examples I provided with this project as an easy boilerplate.
Clone this project, then give it a go !```shell
npx @modelcontextprotocol/inspector examples/server_with_stdio_transport.rb
```
Or to test with an SSE transport using a rack middleware:
```shell
npx @modelcontextprotocol/inspector examples/rack_middleware.rb
```Or to test over SSE with an authenticated rack middleware:
```shell
npx @modelcontextprotocol/inspector examples/authenticated_rack_middleware.rb
```You can test your custom implementation with the official MCP inspector by using:
```shell
# Test with a stdio transport:
npx @modelcontextprotocol/inspector path/to/your_ruby_file.rb# Test with an HTTP / SSE server. In the UI select SSE and input your address.
npx @modelcontextprotocol/inspector
```#### Sinatra
```ruby
# app.rb
require 'sinatra'
require 'fast_mcp'use FastMcp::RackMiddleware.new(name: 'my-ai-server', version: '1.0.0') do |server|
# Register tools and resources here
server.register_tool(SummarizeTool)
endget '/' do
'Hello World!'
end
```### Integrating with Claude Desktop
Add your server to your Claude Desktop configuration at:
- macOS: `~/Library/Application Support/Claude/claude_desktop_config.json`
- Windows: `%APPDATA%\Claude\claude_desktop_config.json````json
{
"mcpServers": {
"my-great-server": {
"command": "ruby",
"args": [
"/Users/path/to/your/awesome/fast-mcp/server.rb"
]
}
}
}
```## How to add a MCP server to Claude, Cursor, or other MCP clients?
Please refer to [configuring_mcp_clients](docs/configuring_mcp_clients.md)## π Supported Specifications
| Feature | Status |
|---------|--------|
| β **JSON-RPC 2.0** | Full implementation for communication |
| β **Tool Definition & Calling** | Define and call tools with rich argument types |
| β **Resource Management** | Create, read, update, and subscribe to resources |
| β **Transport Options** | STDIO, HTTP, and SSE for flexible integration |
| β **Framework Integration** | Rails, Sinatra, Hanami, and any Rack-compatible framework |
| β **Authentication** | Secure your AI endpoints with token authentication |
| β **Schema Support** | Full JSON Schema for tool arguments with validation |## πΊοΈ Use Cases
- π€ **AI-powered Applications**: Connect LLMs to your Ruby app's functionality
- π **Real-time Dashboards**: Build dashboards with live AI-generated insights
- π **Microservice Communication**: Use MCP as a clean protocol between services
- π **Interactive Documentation**: Create AI-enhanced API documentation
- π¬ **Chatbots and Assistants**: Build AI assistants with access to your app's data## π Documentation
- [π Getting Started Guide](docs/getting_started.md)
- [π§© Integration Guide](docs/integration_guide.md)
- [π€οΈ Rails Integration](docs/rails_integration.md)
- [π Sinatra Integration](docs/sinatra_integration.md)
- [π Resources](docs/resources.md)
- [π οΈ Tools](docs/tools.md)## π» Examples
Check out the [examples directory](examples) for more detailed examples:
- **π¨ Basic Examples**:
- [Simple Server](examples/server_with_stdio_transport.rb)
- [Tool Examples](examples/tool_examples.rb)- **π Web Integration**:
- [Rack Middleware](examples/rack_middleware.rb)
- [Authenticated Endpoints](examples/authenticated_rack_middleware.rb)## π§ͺ Requirements
- Ruby 3.2+
## π₯ Contributing
We welcome contributions to Fast MCP! Here's how you can help:
1. Fork the repository
2. Create your feature branch (`git checkout -b my-new-feature`)
3. Commit your changes (`git commit -am 'Add some feature'`)
4. Push to the branch (`git push origin my-new-feature`)
5. Create a new Pull RequestPlease read our [Contributing Guide](CONTRIBUTING.md) for more details.
## π License
This project is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT).
## π Acknowledgments
- The [Model Context Protocol](https://github.com/modelcontextprotocol) team for creating the specification
- The [Dry-Schema](https://github.com/dry-rb/dry-schema) team for the argument validation.
- All contributors to this project