Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yjs/yjs

Shared data types for building collaborative software
https://github.com/yjs/yjs

collaboration collaborative-editing crdt decentralized offline-first p2p peer-to-peer realtime shared-editing yjs

Last synced: 4 days ago
JSON representation

Shared data types for building collaborative software

Awesome Lists containing this project

README

        

# ![Yjs](https://yjs.dev/images/logo/yjs-120x120.png)

> A CRDT framework with a powerful abstraction of shared data

Yjs is a [CRDT implementation](#yjs-crdt-algorithm) that exposes its internal
data structure as *shared types*. Shared types are common data types like `Map`
or `Array` with superpowers: changes are automatically distributed to other
peers and merged without merge conflicts.

Yjs is **network agnostic** (p2p!), supports many existing **rich text
editors**, **offline editing**, **version snapshots**, **undo/redo** and
**shared cursors**. It scales well with an unlimited number of users and is well
suited for even large documents.

* Demos: [https://github.com/yjs/yjs-demos](https://github.com/yjs/yjs-demos)
* Discuss: [https://discuss.yjs.dev](https://discuss.yjs.dev)
* Chat: [Gitter](https://gitter.im/Yjs/community) | [Discord](https://discord.gg/T3nqMT6qbM)
* Benchmark Yjs vs. Automerge:
[https://github.com/dmonad/crdt-benchmarks](https://github.com/dmonad/crdt-benchmarks)
* Podcast [**"Yjs Deep Dive into real time collaborative editing solutions":**](https://www.tag1consulting.com/blog/deep-dive-real-time-collaborative-editing-solutions-tagteamtalk-001-0)
* Podcast [**"Google Docs-style editing in Gutenberg with the YJS framework":**](https://publishpress.com/blog/yjs/)

:construction_worker_woman: If you are looking for professional support, please
consider supporting this project via a "support contract" on
[GitHub Sponsors](https://github.com/sponsors/dmonad). I will attend your issues
quicker and we can discuss questions and problems in regular video conferences.
Otherwise you can find help on our community [discussion board](https://discuss.yjs.dev).

## Sponsorship

Please contribute to the project financially - especially if your company relies
on Yjs. [![Become a Sponsor](https://img.shields.io/static/v1?label=Become%20a%20Sponsor&message=%E2%9D%A4&logo=GitHub&style=flat&color=d42f2d)](https://github.com/sponsors/dmonad)

## Professional Support

* [Support Contract with the Maintainer](https://github.com/sponsors/dmonad) -
By contributing financially to the open-source Yjs project, you can receive
professional support directly from the author. This includes the opportunity for
weekly video calls to discuss your specific challenges.
* [Synergy Codes](https://synergycodes.com/yjs-services/) - Specializing in
consulting and developing real-time collaborative editing solutions for visual
apps, Synergy Codes focuses on interactive diagrams, complex graphs, charts, and
various data visualization types. Their expertise empowers developers to build
engaging and interactive visual experiences leveraging the power of Yjs. See
their work in action at [Visual Collaboration
Showcase](https://yjs-diagram.synergy.codes/).

## Who is using Yjs

* [AFFiNE](https://affine.pro/) A local-first, privacy-first, open source
knowledge base. :star2:
* [Huly](https://huly.io/) - Open Source All-in-One Project Management Platform :star2:
* [Cargo](https://cargo.site/) Site builder for designers and artists :star2:
* [Gitbook](https://gitbook.com) Knowledge management for technical teams :star2:
* [Evernote](https://evernote.com) Note-taking app :star2:
* [Lessonspace](https://thelessonspace.com) Enterprise platform for virtual
classrooms and online training :star2:
* [Ellipsus](ellipsus.com) - Collaborative writing app for storytelling etc.
Supports versioning, change attribution, and "blame". A solution for the whole
publishing process (also selling) :star:
* [Dynaboard](https://dynaboard.com/) Build web apps collaboratively. :star:
* [Relm](https://www.relm.us/) A collaborative gameworld for teamwork and
community. :star:
* [Room.sh](https://room.sh/) A meeting application with integrated
collaborative drawing, editing, and coding tools. :star:
* [Nimbus Note](https://nimbusweb.me/note.php) A note-taking app designed by
Nimbus Web. :star:
* [Pluxbox RadioManager](https://getradiomanager.com/) A web-based app to
collaboratively organize radio broadcasts. :star:
* [modyfi](https://www.modyfi.com) - Modyfi is the design platform built for
multidisciplinary designers. Design, generate, animate, and more — without
switching between apps. :star:
* [Sana](https://sanalabs.com/) A learning platform with collaborative text
editing powered by Yjs.
* [Serenity Notes](https://www.serenity.re/en/notes) End-to-end encrypted
collaborative notes app.
* [PRSM](https://prsm.uk/) Collaborative mind-mapping and system visualisation.
*[(source)](https://github.com/micrology/prsm)*
* [Alldone](https://alldone.app/) A next-gen project management and
collaboration platform.
* [Living Spec](https://livingspec.com/) A modern way for product teams to collaborate.
* [Slidebeamer](https://slidebeamer.com/) Presentation app.
* [BlockSurvey](https://blocksurvey.io) End-to-end encryption for your forms/surveys.
* [Skiff](https://skiff.org/) Private, decentralized workspace.
* [JupyterLab](https://jupyter.org/) Collaborative computational Notebooks
* [JupyterCad](https://jupytercad.readthedocs.io/en/latest/) Extension to
JupyterLab that enables collaborative editing of 3d FreeCAD Models.
* [Hyperquery](https://hyperquery.ai/) A collaborative data workspace for
sharing analyses, documentation, spreadsheets, and dashboards.
* [Nosgestesclimat](https://nosgestesclimat.fr/groupe) The french carbon
footprint calculator has a group P2P mode based on yjs
* [oorja.io](https://oorja.io) Online meeting spaces extensible with
collaborative apps, end-to-end encrypted.
* [LegendKeeper](https://legendkeeper.com) Collaborative campaign planner and
worldbuilding app for tabletop RPGs.
* [IllumiDesk](https://illumidesk.com/) Build courses and content with A.I.
* [btw](https://www.btw.so) Open-source Medium alternative
* [AWS SageMaker](https://aws.amazon.com/sagemaker/) Tools for building Machine
Learning Models
* [linear](https://linear.app) Streamline issues, projects, and product roadmaps.
* [btw](https://www.btw.so) - Personal website builder
* [AWS SageMaker](https://aws.amazon.com/sagemaker/) - Machine Learning Service
* [Arkiter](https://www.arkiter.com/) - Live interview software
* [Appflowy](https://www.appflowy.io/) - They use Yrs
* [Multi.app](https://multi.app) - Multiplayer app sharing: Point, draw and edit
in shared apps as if they're on your computer. They are using Yrs.
* [AppMaster](https://appmaster.io) A No-Code platform for creating
production-ready applications with source code generation.
* [Synthesia](https://www.synthesia.io) - Collaborative Video Editor
* [thinkdeli](https://thinkdeli.com) - A fast and simple notes app powered by AI
* [ourboard](https://github.com/raimohanska/ourboard) - A collaborative whiteboard
applicaiton
* [Ellie.ai](https://ellie.ai) - Data Product Design and Collaboration
* [GoPeer](https://gopeer.org/) - Collaborative tutoring
* [screen.garden](https://screen.garden) - Collaborative backend for PKM apps.
* [NextCloud](https://nextcloud.com/) - Content Collaboration Platform
* [keystatic](https://github.com/Thinkmill/keystatic) - git-based CMS
* [QDAcity](https://qdacity.com) - Collaborative qualitative data analysis platform
* [Kanbert](https://kanbert.com) - Project management software
* [Eclipse Theia](https://github.com/eclipse-theia/theia) - A cloud & desktop
IDE that runs in the browser.
* [ScienHub](https://scienhub.com) - Collaborative LaTeX editor in the browser.
- [Open Collaboration Tools](https://www.open-collab.tools/) - Collaborative
editing for your IDE or custom editor

## Table of Contents

* [Overview](#overview)
* [Bindings](#bindings)
* [Providers](#providers)
* [Tooling](#tooling)
* [Ports](#ports)
* [Getting Started](#getting-started)
* [API](#api)
* [Shared Types](#shared-types)
* [Y.Doc](#ydoc)
* [Document Updates](#document-updates)
* [Relative Positions](#relative-positions)
* [Y.UndoManager](#yundomanager)
* [Yjs CRDT Algorithm](#yjs-crdt-algorithm)
* [License and Author](#license-and-author)

## Overview

This repository contains a collection of shared types that can be observed for
changes and manipulated concurrently. Network functionality and two-way-bindings
are implemented in separate modules.

### Bindings

| Name | Cursors | Binding | Demo |
|---|:-:|---|---|
| [ProseMirror](https://prosemirror.net/)                                                   | ✔ | [y-prosemirror](https://github.com/yjs/y-prosemirror) | [demo](https://demos.yjs.dev/prosemirror/prosemirror.html) |
| [Quill](https://quilljs.com/) | ✔ | [y-quill](https://github.com/yjs/y-quill) | [demo](https://demos.yjs.dev/quill/quill.html) |
| [CodeMirror](https://codemirror.net/) | ✔ | [y-codemirror](https://github.com/yjs/y-codemirror) | [demo](https://demos.yjs.dev/codemirror/codemirror.html) |
| [Monaco](https://microsoft.github.io/monaco-editor/) | ✔ | [y-monaco](https://github.com/yjs/y-monaco) | [demo](https://demos.yjs.dev/monaco/monaco.html) |
| [Slate](https://github.com/ianstormtaylor/slate) | ✔ | [slate-yjs](https://github.com/bitphinix/slate-yjs) | [demo](https://bitphinix.github.io/slate-yjs-example) |
| [BlockSuite](https://github.com/toeverything/blocksuite) | ✔ | (native) | [demo](https://blocksuite-toeverything.vercel.app/?init) |
| [Lexical](https://lexical.dev/) | ✔ | (native) | [demo](https://lexical.dev/docs/collaboration/react#see-it-in-action) |
| [valtio](https://github.com/pmndrs/valtio) | | [valtio-yjs](https://github.com/dai-shi/valtio-yjs) | [demo](https://codesandbox.io/s/valtio-yjs-demo-ox3iy) |
| [immer](https://github.com/immerjs/immer) | | [immer-yjs](https://github.com/sep2/immer-yjs) | [demo](https://codesandbox.io/s/immer-yjs-demo-6e0znb) |
| React | | [react-yjs](https://github.com/nikgraf/react-yjs) | [demo](https://react-yjs-example.vercel.app/) |
| React / Vue / Svelte / MobX | | [SyncedStore](https://syncedstore.org) | [demo](https://syncedstore.org/docs/react) |
| [mobx-keystone](https://mobx-keystone.js.org/) | | [mobx-keystone-yjs](https://github.com/xaviergonz/mobx-keystone/tree/master/packages/mobx-keystone-yjs) | [demo](https://mobx-keystone.js.org/examples/yjs-binding) |

### Providers

Setting up the communication between clients, managing awareness information,
and storing shared data for offline usage is quite a hassle. **Providers**
manage all that for you and are the perfect starting point for your
collaborative app.

> This list of providers is incomplete. Please open PRs to add your providers to
> this list!

#### Connection Providers


y-websocket


A module that contains a simple websocket backend and a websocket client that
connects to that backend. y-redis,
y-sweet, ypy-websocket and
Hocuspocus
(see below) are alternative
backends to y-websocket.

y-webrtc


Propagates document updates peer-to-peer using WebRTC. The peers exchange
signaling data over signaling servers. Publically available signaling servers
are available. Communication over the signaling servers can be encrypted by
providing a shared secret, keeping the connection information and the shared
document private.


@liveblocks/yjs 🌟


Liveblocks Yjs provides a fully
hosted WebSocket infrastructure and persisted data store for Yjs
documents. No configuration or maintenance is required. It also features
Yjs webhook events, REST API to read and update Yjs documents, and a
browser DevTools extension.


y-sweet


A standalone yjs server with persistence to S3 or filesystem. They offer a
cloud service as well.


Hocuspocus


A standalone extensible yjs server with sqlite persistence, webhooks, auth and more.

@superviz/yjs


SuperViz Yjs Provider comes with a secure, scalable real-time infrastructure
for Yjs documents, fully compatible with a set of real-time
collaboration components offered by SuperViz. This solution ensures
synchronization, offline editing, and real-time updates, enabling
multiple users to collaborate effectively within shared workspaces.

PartyKit


Cloud service for building multiplayer apps.

y-libp2p


Uses libp2p to propagate updates via
GossipSub.
Also includes a peer-sync mechanism to catch up on missed updates.

y-dat


[WIP] Write document updates efficiently to the dat network using
multifeed. Each client has
an append-only log of CRDT local updates (hypercore). Multifeed manages and sync
hypercores and y-dat listens to changes and applies them to the Yjs document.

Matrix-CRDT


Use Matrix as an off-the-shelf backend for
Yjs by using the MatrixProvider.
Use Matrix as transport and storage of Yjs updates, so you can focus building
your client app and Matrix can provide powerful features like Authentication,
Authorization, Federation, hosting (self-hosting or SaaS) and even End-to-End
Encryption (E2EE).

yrb-actioncable


An ActionCable companion for Yjs clients. There is a fitting
redis extension as well.

ypy-websocket


Websocket backend, written in Python.

Tinybase


The reactive data store for local-first apps. They support multiple CRDTs and
different network technologies.

y-webxdc


Provider for sharing data in webxdc chat apps.

secsync


An architecture to relay end-to-end encrypted CRDTs over a central service.

#### Persistence Providers


y-indexeddb


Efficiently persists document updates to the browsers indexeddb database.
The document is immediately available and only diffs need to be synced through the
network provider.

y-mongodb-provider


Adds persistent storage to a server with MongoDB. Can be used with the
y-websocket provider.

y-fire


A database and connection provider for Yjs based on Firestore.

y-op-sqlite


Persist YJS updates in your React Native app using
op-sqlite
, the fastest SQLite library for React Native.

y-postgresql


Provides persistent storage for a web server using PostgreSQL and
is easily compatible with y-websocket.

### Tooling

* [y-sweet debugger](https://docs.jamsocket.com/y-sweet/advanced/debugger)
* [liveblocks devtools](https://liveblocks.io/devtools)
* [Yjs inspector](https://inspector.yjs.dev)

### Ports

There are several Yjs-compatible ports to other programming languages.

* [y-octo](https://github.com/toeverything/y-octo) - Rust implementation by
[AFFiNE](https://affine.pro)
* [y-crdt](https://github.com/y-crdt/y-crdt) - Rust implementation with multiple
language bindings to other languages
* [yrs](https://github.com/y-crdt/y-crdt/tree/main/yrs) - Rust interface
* [ypy](https://github.com/y-crdt/ypy) - Python binding
* [yrb](https://github.com/y-crdt/yrb) - Ruby binding
* [yswift](https://github.com/y-crdt/yswift) - Swift binding
* [yffi](https://github.com/y-crdt/y-crdt/tree/main/yffi) - C-FFI
* [ywasm](https://github.com/y-crdt/y-crdt/tree/main/ywasm) - WASM binding
* [y_ex](https://github.com/satoren/y_ex) - Elixir bindings
* [ycs](https://github.com/yjs/ycs) - .Net compatible C# implementation.

## Getting Started

Install Yjs and a provider with your favorite package manager:

```sh
npm i yjs y-websocket
```

Start the y-websocket server:

```sh
PORT=1234 node ./node_modules/y-websocket/bin/server.cjs
```

### Example: Observe types

```js
import * as Y from 'yjs';

const doc = new Y.Doc();
const yarray = doc.getArray('my-array')
yarray.observe(event => {
console.log('yarray was modified')
})
// every time a local or remote client modifies yarray, the observer is called
yarray.insert(0, ['val']) // => "yarray was modified"
```

### Example: Nest types

Remember, shared types are just plain old data types. The only limitation is
that a shared type must exist only once in the shared document.

```js
const ymap = doc.getMap('map')
const foodArray = new Y.Array()
foodArray.insert(0, ['apple', 'banana'])
ymap.set('food', foodArray)
ymap.get('food') === foodArray // => true
ymap.set('fruit', foodArray) // => Error! foodArray is already defined
```

Now you understand how types are defined on a shared document. Next you can jump
to the [demo repository](https://github.com/yjs/yjs-demos) or continue reading
the API docs.

### Example: Using and combining providers

Any of the Yjs providers can be combined with each other. So you can sync data
over different network technologies.

In most cases you want to use a network provider (like y-websocket or y-webrtc)
in combination with a persistence provider (y-indexeddb in the browser).
Persistence allows you to load the document faster and to persist data that is
created while offline.

For the sake of this demo we combine two different network providers with a
persistence provider.

```js
import * as Y from 'yjs'
import { WebrtcProvider } from 'y-webrtc'
import { WebsocketProvider } from 'y-websocket'
import { IndexeddbPersistence } from 'y-indexeddb'

const ydoc = new Y.Doc()

// this allows you to instantly get the (cached) documents data
const indexeddbProvider = new IndexeddbPersistence('count-demo', ydoc)
indexeddbProvider.whenSynced.then(() => {
console.log('loaded data from indexed db')
})

// Sync clients with the y-webrtc provider.
const webrtcProvider = new WebrtcProvider('count-demo', ydoc)

// Sync clients with the y-websocket provider
const websocketProvider = new WebsocketProvider(
'wss://demos.yjs.dev', 'count-demo', ydoc
)

// array of numbers which produce a sum
const yarray = ydoc.getArray('count')

// observe changes of the sum
yarray.observe(event => {
// print updates when the data changes
console.log('new sum: ' + yarray.toArray().reduce((a,b) => a + b))
})

// add 1 to the sum
yarray.push([1]) // => "new sum: 1"
```

## API

```js
import * as Y from 'yjs'
```

### Shared Types

Y.Array



A shareable Array-like type that supports efficient insert/delete of elements
at any position. Internally it uses a linked list of Arrays that is split when
necessary.


const yarray = new Y.Array()



Y.Array.from(Array<object|boolean|Array|string|number|null|Uint8Array|Y.Type>):
Y.Array

An alternative factory function to create a Y.Array based on existing content.

parent:Y.AbstractType|null

insert(index:number, content:Array<object|boolean|Array|string|number|null|Uint8Array|Y.Type>)

Insert content at index. Note that content is an array of elements.
I.e. array.insert(0, [1]) splices the list and inserts 1 at
position 0.

push(Array<Object|boolean|Array|string|number|null|Uint8Array|Y.Type>)

unshift(Array<Object|boolean|Array|string|number|null|Uint8Array|Y.Type>)

delete(index:number, length:number)

get(index:number)

slice(start:number, end:number):Array<Object|boolean|Array|string|number|null|Uint8Array|Y.Type>
Retrieve a range of content

length:number



forEach(function(value:object|boolean|Array|string|number|null|Uint8Array|Y.Type,
index:number, array: Y.Array))



map(function(T, number, YArray):M):Array<M>

clone(): Y.Array

Clone all values into a fresh Y.Array instance. The returned type can be
included into the Yjs document.

toArray():Array<object|boolean|Array|string|number|null|Uint8Array|Y.Type>
Copies the content of this YArray to a new Array.

toJSON():Array<Object|boolean|Array|string|number|null>

Copies the content of this YArray to a new Array. It transforms all child types
to JSON using their toJSON method.

[Symbol.Iterator]

Returns an YArray Iterator that contains the values for each index in the array.
for (let value of yarray) { .. }


observe(function(YArrayEvent, Transaction):void)

Adds an event listener to this type that will be called synchronously every time
this type is modified. In the case this type is modified in the event listener,
the event listener will be called again after the current event listener returns.

unobserve(function(YArrayEvent, Transaction):void)

Removes an observe event listener from this type.

observeDeep(function(Array<YEvent>, Transaction):void)

Adds an event listener to this type that will be called synchronously every time
this type or any of its children is modified. In the case this type is modified
in the event listener, the event listener will be called again after the current
event listener returns. The event listener receives all Events created by itself
or any of its children.

unobserveDeep(function(Array<YEvent>, Transaction):void)

Removes an observeDeep event listener from this type.

Y.Map



A shareable Map type.


const ymap = new Y.Map()


parent:Y.AbstractType|null

size: number
Total number of key/value pairs.

get(key:string):object|boolean|string|number|null|Uint8Array|Y.Type

set(key:string, value:object|boolean|string|number|null|Uint8Array|Y.Type)

delete(key:string)

has(key:string):boolean

clear()
Removes all elements from this YMap.

clone():Y.Map
Clone this type into a fresh Yjs type.

toJSON():Object<string, Object|boolean|Array|string|number|null|Uint8Array>

Copies the [key,value] pairs of this YMap to a new Object.It
transforms all child types to JSON using their toJSON method.

forEach(function(value:object|boolean|Array|string|number|null|Uint8Array|Y.Type,
key:string, map: Y.Map))


Execute the provided function once for every key-value pair.

[Symbol.Iterator]

Returns an Iterator of [key, value] pairs.
for (let [key, value] of ymap) { .. }


entries()

Returns an Iterator of [key, value] pairs.

values()

Returns an Iterator of all values.

keys()

Returns an Iterator of all keys.

observe(function(YMapEvent, Transaction):void)

Adds an event listener to this type that will be called synchronously every time
this type is modified. In the case this type is modified in the event listener,
the event listener will be called again after the current event listener returns.

unobserve(function(YMapEvent, Transaction):void)

Removes an observe event listener from this type.

observeDeep(function(Array<YEvent>, Transaction):void)

Adds an event listener to this type that will be called synchronously every time
this type or any of its children is modified. In the case this type is modified
in the event listener, the event listener will be called again after the current
event listener returns. The event listener receives all Events created by itself
or any of its children.

unobserveDeep(function(Array<YEvent>, Transaction):void)

Removes an observeDeep event listener from this type.

Y.Text



A shareable type that is optimized for shared editing on text. It allows to
assign properties to ranges in the text. This makes it possible to implement
rich-text bindings to this type.



This type can also be transformed to the
delta format. Similarly the
YTextEvents compute changes as deltas.


const ytext = new Y.Text()


parent:Y.AbstractType|null

insert(index:number, content:string, [formattingAttributes:Object<string,string>])

Insert a string at index and assign formatting attributes to it.
ytext.insert(0, 'bold text', { bold: true })


delete(index:number, length:number)

format(index:number, length:number, formattingAttributes:Object<string,string>)
Assign formatting attributes to a range in the text

applyDelta(delta: Delta, opts:Object<string,any>)

See Quill Delta
Can set options for preventing remove ending newLines, default is true.
ytext.applyDelta(delta, { sanitize: false })


length:number

toString():string
Transforms this type, without formatting options, into a string.

toJSON():string
See toString

toDelta():Delta

Transforms this type to a Quill Delta

observe(function(YTextEvent, Transaction):void)

Adds an event listener to this type that will be called synchronously every time
this type is modified. In the case this type is modified in the event listener,
the event listener will be called again after the current event listener returns.

unobserve(function(YTextEvent, Transaction):void)

Removes an observe event listener from this type.

observeDeep(function(Array<YEvent>, Transaction):void)

Adds an event listener to this type that will be called synchronously every time
this type or any of its children is modified. In the case this type is modified
in the event listener, the event listener will be called again after the current
event listener returns. The event listener receives all Events created by itself
or any of its children.

unobserveDeep(function(Array<YEvent>, Transaction):void)

Removes an observeDeep event listener from this type.

Y.XmlFragment



A container that holds an Array of Y.XmlElements.


const yxml = new Y.XmlFragment()


parent:Y.AbstractType|null

firstChild:Y.XmlElement|Y.XmlText|null

insert(index:number, content:Array<Y.XmlElement|Y.XmlText>)

delete(index:number, length:number)

get(index:number)

slice(start:number, end:number):Array<Y.XmlElement|Y.XmlText>
Retrieve a range of content

length:number

clone():Y.XmlFragment
Clone this type into a fresh Yjs type.

toArray():Array<Y.XmlElement|Y.XmlText>
Copies the children to a new Array.

toDOM():DocumentFragment
Transforms this type and all children to new DOM elements.

toString():string
Get the XML serialization of all descendants.

toJSON():string
See toString.

createTreeWalker(filter: function(AbstractType<any>):boolean):Iterable
Create an Iterable that walks through the children.

observe(function(YXmlEvent, Transaction):void)

Adds an event listener to this type that will be called synchronously every time
this type is modified. In the case this type is modified in the event listener,
the event listener will be called again after the current event listener returns.

unobserve(function(YXmlEvent, Transaction):void)

Removes an observe event listener from this type.

observeDeep(function(Array<YEvent>, Transaction):void)

Adds an event listener to this type that will be called synchronously every time
this type or any of its children is modified. In the case this type is modified
in the event listener, the event listener will be called again after the current
event listener returns. The event listener receives all Events created by itself
or any of its children.

unobserveDeep(function(Array<YEvent>, Transaction):void)

Removes an observeDeep event listener from this type.

Y.XmlElement



A shareable type that represents an XML Element. It has a nodeName,
attributes, and a list of children. But it makes no effort to validate its
content and be actually XML compliant.


const yxml = new Y.XmlElement()


parent:Y.AbstractType|null

firstChild:Y.XmlElement|Y.XmlText|null

nextSibling:Y.XmlElement|Y.XmlText|null

prevSibling:Y.XmlElement|Y.XmlText|null

insert(index:number, content:Array<Y.XmlElement|Y.XmlText>)

delete(index:number, length:number)

get(index:number)

length:number

setAttribute(attributeName:string, attributeValue:string)

removeAttribute(attributeName:string)

getAttribute(attributeName:string):string

getAttributes():Object<string,string>

get(i:number):Y.XmlElement|Y.XmlText
Retrieve the i-th element.

slice(start:number, end:number):Array<Y.XmlElement|Y.XmlText>
Retrieve a range of content

clone():Y.XmlElement
Clone this type into a fresh Yjs type.

toArray():Array<Y.XmlElement|Y.XmlText>
Copies the children to a new Array.

toDOM():Element
Transforms this type and all children to a new DOM element.

toString():string
Get the XML serialization of all descendants.

toJSON():string
See toString.

observe(function(YXmlEvent, Transaction):void)

Adds an event listener to this type that will be called synchronously every
time this type is modified. In the case this type is modified in the event
listener, the event listener will be called again after the current event
listener returns.

unobserve(function(YXmlEvent, Transaction):void)

Removes an observe event listener from this type.

observeDeep(function(Array<YEvent>, Transaction):void)

Adds an event listener to this type that will be called synchronously every time
this type or any of its children is modified. In the case this type is modified
in the event listener, the event listener will be called again after the current
event listener returns. The event listener receives all Events created by itself
or any of its children.

unobserveDeep(function(Array<YEvent>, Transaction):void)

Removes an observeDeep event listener from this type.

### Y.Doc

```js
const doc = new Y.Doc()
```


clientID
A unique id that identifies this client. (readonly)

gc

Whether garbage collection is enabled on this doc instance. Set `doc.gc = false`
in order to disable gc and be able to restore old content. See https://github.com/yjs/yjs#yjs-crdt-algorithm
for more information about gc in Yjs.

transact(function(Transaction):void [, origin:any])

Every change on the shared document happens in a transaction. Observer calls and
the update event are called after each transaction. You should
bundle changes into a single transaction to reduce the amount of event
calls. I.e. doc.transact(() => { yarray.insert(..); ymap.set(..) })
triggers a single change event.
You can specify an optional origin
parameter that is stored on transaction.origin and
on('update', (update, origin) => ..).

toJSON():any

Deprecated: It is recommended to call toJSON directly on the shared types.
Converts the entire document into a js object, recursively traversing each yjs
type. Doesn't log types that have not been defined (using
ydoc.getType(..)).

get(string, Y.[TypeClass]):[Type]
Define a shared type.

getArray(string):Y.Array
Define a shared Y.Array type. Is equivalent to y.get(string, Y.Array).

getMap(string):Y.Map
Define a shared Y.Map type. Is equivalent to y.get(string, Y.Map).

getText(string):Y.Text
Define a shared Y.Text type. Is equivalent to y.get(string, Y.Text).

getXmlElement(string, string):Y.XmlElement
Define a shared Y.XmlElement type. Is equivalent to y.get(string, Y.XmlElement).

getXmlFragment(string):Y.XmlFragment
Define a shared Y.XmlFragment type. Is equivalent to y.get(string, Y.XmlFragment).

on(string, function)
Register an event listener on the shared type

off(string, function)
Unregister an event listener from the shared type

#### Y.Doc Events


on('update', function(updateMessage:Uint8Array, origin:any, Y.Doc):void)

Listen to document updates. Document updates must be transmitted to all other
peers. You can apply document updates in any order and multiple times. Use `updateV2`
to receive V2 events.

on('beforeTransaction', function(Y.Transaction, Y.Doc):void)
Emitted before each transaction.

on('afterTransaction', function(Y.Transaction, Y.Doc):void)
Emitted after each transaction.

on('beforeAllTransactions', function(Y.Doc):void)

Transactions can be nested (e.g. when an event within a transaction calls another
transaction). Emitted before the first transaction.

on('afterAllTransactions', function(Y.Doc, Array<Y.Transaction>):void)
Emitted after the last transaction is cleaned up.

### Document Updates

Changes on the shared document are encoded into *document updates*. Document
updates are *commutative* and *idempotent*. This means that they can be applied
in any order and multiple times.

#### Example: Listen to update events and apply them on remote client

```js
const doc1 = new Y.Doc()
const doc2 = new Y.Doc()

doc1.on('update', update => {
Y.applyUpdate(doc2, update)
})

doc2.on('update', update => {
Y.applyUpdate(doc1, update)
})

// All changes are also applied to the other document
doc1.getArray('myarray').insert(0, ['Hello doc2, you got this?'])
doc2.getArray('myarray').get(0) // => 'Hello doc2, you got this?'
```

Yjs internally maintains a [state vector](#state-vector) that denotes the next
expected clock from each client. In a different interpretation it holds the
number of structs created by each client. When two clients sync, you can either
exchange the complete document structure or only the differences by sending the
state vector to compute the differences.

#### Example: Sync two clients by exchanging the complete document structure

```js
const state1 = Y.encodeStateAsUpdate(ydoc1)
const state2 = Y.encodeStateAsUpdate(ydoc2)
Y.applyUpdate(ydoc1, state2)
Y.applyUpdate(ydoc2, state1)
```

#### Example: Sync two clients by computing the differences

This example shows how to sync two clients with the minimal amount of exchanged
data by computing only the differences using the state vector of the remote
client. Syncing clients using the state vector requires another roundtrip, but
can save a lot of bandwidth.

```js
const stateVector1 = Y.encodeStateVector(ydoc1)
const stateVector2 = Y.encodeStateVector(ydoc2)
const diff1 = Y.encodeStateAsUpdate(ydoc1, stateVector2)
const diff2 = Y.encodeStateAsUpdate(ydoc2, stateVector1)
Y.applyUpdate(ydoc1, diff2)
Y.applyUpdate(ydoc2, diff1)
```

#### Example: Syncing clients without loading the Y.Doc

It is possible to sync clients and compute delta updates without loading the Yjs
document to memory. Yjs exposes an API to compute the differences directly on the
binary document updates.

```js
// encode the current state as a binary buffer
let currentState1 = Y.encodeStateAsUpdate(ydoc1)
let currentState2 = Y.encodeStateAsUpdate(ydoc2)
// now we can continue syncing clients using state vectors without using the Y.Doc
ydoc1.destroy()
ydoc2.destroy()

const stateVector1 = Y.encodeStateVectorFromUpdate(currentState1)
const stateVector2 = Y.encodeStateVectorFromUpdate(currentState2)
const diff1 = Y.diffUpdate(currentState1, stateVector2)
const diff2 = Y.diffUpdate(currentState2, stateVector1)

// sync clients
currentState1 = Y.mergeUpdates([currentState1, diff2])
currentState2 = Y.mergeUpdates([currentState2, diff1])
```

#### Obfuscating Updates

If one of your users runs into a weird bug (e.g. the rich-text editor throws
error messages), then you don't have to request the full document from your
user. Instead, they can obfuscate the document (i.e. replace the content with
meaningless generated content) before sending it to you. Note that someone might
still deduce the type of content by looking at the general structure of the
document. But this is much better than requesting the original document.

Obfuscated updates contain all the CRDT-related data that is required for
merging. So it is safe to merge obfuscated updates.

```javascript
const ydoc = new Y.Doc()
// perform some changes..
ydoc.getText().insert(0, 'hello world')
const update = Y.encodeStateAsUpdate(ydoc)
// the below update contains scrambled data
const obfuscatedUpdate = Y.obfuscateUpdate(update)
const ydoc2 = new Y.Doc()
Y.applyUpdate(ydoc2, obfuscatedUpdate)
ydoc2.getText().toString() // => "00000000000"
```

#### Using V2 update format

Yjs implements two update formats. By default you are using the V1 update format.
You can opt-in into the V2 update format which provides much better compression.
It is not yet used by all providers. However, you can already use it if
you are building your own provider. All below functions are available with the
suffix "V2". E.g. `Y.applyUpdate` ⇒ `Y.applyUpdateV2`. Also when listening to updates
you need to specifically need listen for V2 events e.g. `yDoc.on('updateV2', …)`.
We also support conversion functions between both formats:
`Y.convertUpdateFormatV1ToV2` & `Y.convertUpdateFormatV2ToV1`.

#### Update API


Y.applyUpdate(Y.Doc, update:Uint8Array, [transactionOrigin:any])

Apply a document update on the shared document. Optionally you can specify
transactionOrigin that will be stored on
transaction.origin
and ydoc.on('update', (update, origin) => ..).

Y.encodeStateAsUpdate(Y.Doc, [encodedTargetStateVector:Uint8Array]):Uint8Array

Encode the document state as a single update message that can be applied on the
remote document. Optionally specify the target state vector to only write the
differences to the update message.

Y.encodeStateVector(Y.Doc):Uint8Array
Computes the state vector and encodes it into an Uint8Array.

Y.mergeUpdates(Array<Uint8Array>)

Merge several document updates into a single document update while removing
duplicate information. The merged document update is always smaller than
the separate updates because of the compressed encoding.

Y.encodeStateVectorFromUpdate(Uint8Array): Uint8Array

Computes the state vector from a document update and encodes it into an Uint8Array.

Y.diffUpdate(update: Uint8Array, stateVector: Uint8Array): Uint8Array

Encode the missing differences to another update message. This function works
similarly to Y.encodeStateAsUpdate(ydoc, stateVector) but works
on updates instead.

convertUpdateFormatV1ToV2

Convert V1 update format to the V2 update format.

convertUpdateFormatV2ToV1

Convert V2 update format to the V1 update format.

### Relative Positions

When working with collaborative documents, we often need to work with positions.
Positions may represent cursor locations, selection ranges, or even assign a
comment to a range of text. Normal index-positions (expressed as integers) are
not convenient to use because the index-range is invalidated as soon as a remote
change manipulates the document. Relative positions give you a powerful API to
express positions.

A relative position is fixated to an element in the shared document and is not
affected by remote changes. I.e. given the document `"a|c"`, the relative
position is attached to `c`. When a remote user modifies the document by
inserting a character before the cursor, the cursor will stay attached to the
character `c`. `insert(1, 'x')("a|c") = "ax|c"`. When the relative position is
set to the end of the document, it will stay attached to the end of the
document.

#### Example: Transform to RelativePosition and back

```js
const relPos = Y.createRelativePositionFromTypeIndex(ytext, 2)
const pos = Y.createAbsolutePositionFromRelativePosition(relPos, doc)
pos.type === ytext // => true
pos.index === 2 // => true
```

#### Example: Send relative position to remote client (json)

```js
const relPos = Y.createRelativePositionFromTypeIndex(ytext, 2)
const encodedRelPos = JSON.stringify(relPos)
// send encodedRelPos to remote client..
const parsedRelPos = JSON.parse(encodedRelPos)
const pos = Y.createAbsolutePositionFromRelativePosition(parsedRelPos, remoteDoc)
pos.type === remoteytext // => true
pos.index === 2 // => true
```

#### Example: Send relative position to remote client (Uint8Array)

```js
const relPos = Y.createRelativePositionFromTypeIndex(ytext, 2)
const encodedRelPos = Y.encodeRelativePosition(relPos)
// send encodedRelPos to remote client..
const parsedRelPos = Y.decodeRelativePosition(encodedRelPos)
const pos = Y.createAbsolutePositionFromRelativePosition(parsedRelPos, remoteDoc)
pos.type === remoteytext // => true
pos.index === 2 // => true
```



Y.createRelativePositionFromTypeIndex(type:Uint8Array|Y.Type, index: number
[, assoc=0])


Create a relative position fixated to the i-th element in any sequence-like
shared type (if assoc >= 0). By default, the position associates
with the character that comes after the specified index position. If
assoc < 0, then the relative position associates with the character
before the specified index position.


Y.createAbsolutePositionFromRelativePosition(RelativePosition, Y.Doc):
{ type: Y.AbstractType, index: number, assoc: number } | null


Create an absolute position from a relative position. If the relative position
cannot be referenced, or the type is deleted, then the result is null.


Y.encodeRelativePosition(RelativePosition):Uint8Array


Encode a relative position to an Uint8Array. Binary data is the preferred
encoding format for document updates. If you prefer JSON encoding, you can
simply JSON.stringify / JSON.parse the relative position instead.

Y.decodeRelativePosition(Uint8Array):RelativePosition
Decode a binary-encoded relative position to a RelativePositon object.

### Y.UndoManager

Yjs ships with an Undo/Redo manager for selective undo/redo of changes on a
Yjs type. The changes can be optionally scoped to transaction origins.

```js
const ytext = doc.getText('text')
const undoManager = new Y.UndoManager(ytext)

ytext.insert(0, 'abc')
undoManager.undo()
ytext.toString() // => ''
undoManager.redo()
ytext.toString() // => 'abc'
```


constructor(scope:Y.AbstractType|Array<Y.AbstractType>
[, {captureTimeout:number,trackedOrigins:Set<any>,deleteFilter:function(item):boolean}])

Accepts either single type as scope or an array of types.

undo()

redo()

stopCapturing()



on('stack-item-added', { stackItem: { meta: Map<any,any> }, type: 'undo'
| 'redo' })



Register an event that is called when a StackItem is added to the
undo- or the redo-stack.



on('stack-item-updated', { stackItem: { meta: Map<any,any> }, type: 'undo'
| 'redo' })



Register an event that is called when an existing StackItem is updated.
This happens when two changes happen within a "captureInterval".



on('stack-item-popped', { stackItem: { meta: Map<any,any> }, type: 'undo'
| 'redo' })



Register an event that is called when a StackItem is popped from
the undo- or the redo-stack.



on('stack-cleared', { undoStackCleared: boolean, redoStackCleared: boolean })



Register an event that is called when the undo- and/or the redo-stack is cleared.

#### Example: Stop Capturing

UndoManager merges Undo-StackItems if they are created within time-gap
smaller than `options.captureTimeout`. Call `um.stopCapturing()` so that the next
StackItem won't be merged.

```js
// without stopCapturing
ytext.insert(0, 'a')
ytext.insert(1, 'b')
undoManager.undo()
ytext.toString() // => '' (note that 'ab' was removed)
// with stopCapturing
ytext.insert(0, 'a')
undoManager.stopCapturing()
ytext.insert(0, 'b')
undoManager.undo()
ytext.toString() // => 'a' (note that only 'b' was removed)
```

#### Example: Specify tracked origins

Every change on the shared document has an origin. If no origin was specified,
it defaults to `null`. By specifying `trackedOrigins` you can
selectively specify which changes should be tracked by `UndoManager`. The
UndoManager instance is always added to `trackedOrigins`.

```js
class CustomBinding {}

const ytext = doc.getText('text')
const undoManager = new Y.UndoManager(ytext, {
trackedOrigins: new Set([42, CustomBinding])
})

ytext.insert(0, 'abc')
undoManager.undo()
ytext.toString() // => 'abc' (does not track because origin `null` and not part
// of `trackedTransactionOrigins`)
ytext.delete(0, 3) // revert change

doc.transact(() => {
ytext.insert(0, 'abc')
}, 42)
undoManager.undo()
ytext.toString() // => '' (tracked because origin is an instance of `trackedTransactionorigins`)

doc.transact(() => {
ytext.insert(0, 'abc')
}, 41)
undoManager.undo()
ytext.toString() // => 'abc' (not tracked because 41 is not an instance of
// `trackedTransactionorigins`)
ytext.delete(0, 3) // revert change

doc.transact(() => {
ytext.insert(0, 'abc')
}, new CustomBinding())
undoManager.undo()
ytext.toString() // => '' (tracked because origin is a `CustomBinding` and
// `CustomBinding` is in `trackedTransactionorigins`)
```

#### Example: Add additional information to the StackItems

When undoing or redoing a previous action, it is often expected to restore
additional meta information like the cursor location or the view on the
document. You can assign meta-information to Undo-/Redo-StackItems.

```js
const ytext = doc.getText('text')
const undoManager = new Y.UndoManager(ytext, {
trackedOrigins: new Set([42, CustomBinding])
})

undoManager.on('stack-item-added', event => {
// save the current cursor location on the stack-item
event.stackItem.meta.set('cursor-location', getRelativeCursorLocation())
})

undoManager.on('stack-item-popped', event => {
// restore the current cursor location on the stack-item
restoreCursorLocation(event.stackItem.meta.get('cursor-location'))
})
```

## Yjs CRDT Algorithm

*Conflict-free replicated data types* (CRDT) for collaborative editing are an
alternative approach to *operational transformation* (OT). A very simple
differentiation between the two approaches is that OT attempts to transform
index positions to ensure convergence (all clients end up with the same
content), while CRDTs use mathematical models that usually do not involve index
transformations, like linked lists. OT is currently the de-facto standard for
shared editing on text. OT approaches that support shared editing without a
central source of truth (a central server) require too much bookkeeping to be
viable in practice. CRDTs are better suited for distributed systems, provide
additional guarantees that the document can be synced with remote clients, and
do not require a central source of truth.

Yjs implements a modified version of the algorithm described in [this
paper](https://www.researchgate.net/publication/310212186_Near_Real-Time_Peer-to-Peer_Shared_Editing_on_Extensible_Data_Types).
This [article](https://blog.kevinjahns.de/are-crdts-suitable-for-shared-editing/)
explains a simple optimization on the CRDT model and
gives more insight about the performance characteristics in Yjs.
More information about the specific implementation is available in
[INTERNALS.md](./INTERNALS.md) and in
[this walkthrough of the Yjs codebase](https://youtu.be/0l5XgnQ6rB4).

CRDTs that are suitable for shared text editing suffer from the fact that they
only grow in size. There are CRDTs that do not grow in size, but they do not
have the characteristics that are benificial for shared text editing (like
intention preservation). Yjs implements many improvements to the original
algorithm that diminish the trade-off that the document only grows in size. We
can't garbage collect deleted structs (tombstones) while ensuring a unique
order of the structs. But we can 1. merge preceeding structs into a single
struct to reduce the amount of meta information, 2. we can delete content from
the struct if it is deleted, and 3. we can garbage collect tombstones if we
don't care about the order of the structs anymore (e.g. if the parent was
deleted).

**Examples:**

1. If a user inserts elements in sequence, the struct will be merged into a
single struct. E.g. `text.insert(0, 'a'), text.insert(1, 'b');` is
first represented as two structs (`[{id: {client, clock: 0}, content: 'a'},
{id: {client, clock: 1}, content: 'b'}`) and then merged into a single
struct: `[{id: {client, clock: 0}, content: 'ab'}]`.
2. When a struct that contains content (e.g. `ItemString`) is deleted, the
struct will be replaced with an `ItemDeleted` that does not contain content
anymore.
3. When a type is deleted, all child elements are transformed to `GC` structs. A
`GC` struct only denotes the existence of a struct and that it is deleted.
`GC` structs can always be merged with other `GC` structs if the id's are
adjacent.

Especially when working on structured content (e.g. shared editing on
ProseMirror), these improvements yield very good results when
[benchmarking](https://github.com/dmonad/crdt-benchmarks) random document edits.
In practice they show even better results, because users usually edit text in
sequence, resulting in structs that can easily be merged. The benchmarks show
that even in the worst case scenario that a user edits text from right to left,
Yjs achieves good performance even for huge documents.

### State Vector

Yjs has the ability to exchange only the differences when syncing two clients.
We use lamport timestamps to identify structs and to track in which order a
client created them. Each struct has an `struct.id = { client: number, clock:
number}` that uniquely identifies a struct. We define the next expected `clock`
by each client as the *state vector*. This data structure is similar to the
[version vectors](https://en.wikipedia.org/wiki/Version_vector) data structure.
But we use state vectors only to describe the state of the local document, so we
can compute the missing struct of the remote client. We do not use it to track
causality.

## License and Author

Yjs and all related projects are [**MIT licensed**](./LICENSE).

Yjs is based on my research as a student at the [RWTH
i5](http://dbis.rwth-aachen.de/). Now I am working on Yjs in my spare time.

Fund this project by donating on [GitHub Sponsors](https://github.com/sponsors/dmonad)
or hiring [me](https://github.com/dmonad) as a contractor for your collaborative
app.