Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ymcui/Chinese-LLaMA-Alpaca-3

中文羊驼大模型三期项目 (Chinese Llama-3 LLMs) developed from Meta Llama 3
https://github.com/ymcui/Chinese-LLaMA-Alpaca-3

alpaca large-language-models llama llama-2 llama-3 llama3 llm nlp

Last synced: about 2 months ago
JSON representation

中文羊驼大模型三期项目 (Chinese Llama-3 LLMs) developed from Meta Llama 3

Awesome Lists containing this project

README

        

[**🇨🇳中文**](./README.md) | [**🌐English**](./README_EN.md) | [**📖文档/Docs**](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki) | [**❓提问/Issues**](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/issues) | [**💬讨论/Discussions**](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/discussions) | [**⚔️竞技场/Arena**](http://llm-arena.ymcui.com/)









GitHub
GitHub release (latest by date)
GitHub top language



🤗 Hugging Face
🤖 ModelScope
🐿️ 机器之心SOTA!模型
🟣 wisemodel
🤗 在线Demo

本项目基于Meta最新发布的新一代开源大模型[Llama-3](https://github.com/facebookresearch/llama3)开发,是Chinese-LLaMA-Alpaca开源大模型相关系列项目([一期](https://github.com/ymcui/Chinese-LLaMA-Alpaca)、[二期](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2))的第三期。本项目开源了**中文Llama-3基座模型和中文Llama-3-Instruct指令精调大模型**。这些模型在原版Llama-3的基础上使用了大规模中文数据进行增量预训练,并且使用精选指令数据进行精调,进一步提升了中文基础语义和指令理解能力,相比二代相关模型获得了显著性能提升。

#### 主要内容

- 🚀 开源Llama-3-Chinese基座模型和Llama-3-Chinese-Instruct指令模型(v1, v2, v3)
- 🚀 开源了预训练脚本、指令精调脚本,用户可根据需要进一步训练或微调模型
- 🚀 开源了alpaca_zh_51k, stem_zh_instruction, ruozhiba_gpt4 (4o/4T) 指令精调数据
- 🚀 提供了利用个人电脑CPU/GPU快速在本地进行大模型量化和部署的教程
- 🚀 支持[🤗transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp), [text-generation-webui](https://github.com/oobabooga/text-generation-webui), [vLLM](https://github.com/vllm-project/vllm), [Ollama](https://ollama.com)等Llama-3生态

----

[中文Mixtral大模型](https://github.com/ymcui/Chinese-Mixtral) | [中文LLaMA-2&Alpaca-2大模型](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | [中文LLaMA&Alpaca大模型](https://github.com/ymcui/Chinese-LLaMA-Alpaca) | [多模态中文LLaMA&Alpaca大模型](https://github.com/airaria/Visual-Chinese-LLaMA-Alpaca) | [多模态VLE](https://github.com/iflytek/VLE) | [中文MiniRBT](https://github.com/iflytek/MiniRBT) | [中文LERT](https://github.com/ymcui/LERT) | [中英文PERT](https://github.com/ymcui/PERT) | [中文MacBERT](https://github.com/ymcui/MacBERT) | [中文ELECTRA](https://github.com/ymcui/Chinese-ELECTRA) | [中文XLNet](https://github.com/ymcui/Chinese-XLNet) | [中文BERT](https://github.com/ymcui/Chinese-BERT-wwm) | [知识蒸馏工具TextBrewer](https://github.com/airaria/TextBrewer) | [模型裁剪工具TextPruner](https://github.com/airaria/TextPruner) | [蒸馏裁剪一体化GRAIN](https://github.com/airaria/GRAIN)

## 新闻

**[2024/05/30] 发布Llama-3-Chinese-8B-Instruct-v3版指令模型,相比v1/v2在下游任务上获得显著提升。详情查看:[📚v3.0版本发布日志](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v3.0)**

[2024/05/08] 发布Llama-3-Chinese-8B-Instruct-v2版指令模型,直接采用500万条指令数据在 [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) 上进行精调。详情查看:[📚v2.0版本发布日志](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v2.0)

[2024/05/07] 添加预训练脚本、指令精调脚本。详情查看:[📚v1.1版本发布日志](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v1.1)

[2024/04/30] 发布Llama-3-Chinese-8B基座模型和Llama-3-Chinese-8B-Instruct指令模型。详情查看:[📚v1.0版本发布日志](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/releases/tag/v1.0)

[2024/04/19] 🚀 正式启动Chinese-LLaMA-Alpaca-3项目

## 内容导引
| 章节 | 描述 |
| ------------------------------------- | ------------------------------------------------------------ |
| [💁🏻‍♂️模型简介](#模型简介) | 简要介绍本项目相关模型的技术特点 |
| [⏬模型下载](#模型下载) | 中文Llama-3大模型下载地址 |
| [💻推理与部署](#推理与部署) | 介绍了如何对模型进行量化并使用个人电脑部署并体验大模型 |
| [💯模型效果](#模型效果) | 介绍了模型在部分任务上的效果 |
| [📝训练与精调](#训练与精调) | 介绍了如何训练和精调中文Llama-3大模型 |
| [❓常见问题](#常见问题) | 一些常见问题的回复 |

## 模型简介

本项目推出了基于Meta Llama-3的中文开源大模型Llama-3-Chinese以及Llama-3-Chinese-Instruct。主要特点如下:

#### 📖 使用原版Llama-3词表

- Llama-3相比其前两代显著扩充了词表大小,由32K扩充至128K,并且改为BPE词表
- 初步实验发现Llama-3词表的编码效率与我们扩充词表的[中文LLaMA-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)相当,效率约为中文LLaMA-2词表的95%(基于维基百科数据上的编码效率测试)
- 结合我们在[中文Mixtral](https://github.com/ymcui/Chinese-Mixtral)上的相关经验及实验结论[^1],我们**并未对词表进行额外扩充**

[^1]: [Cui and Yao, 2024. Rethinking LLM Language Adaptation: A Case Study on Chinese Mixtral](https://arxiv.org/abs/2403.01851)

#### 🚄 长上下文长度由二代4K扩展至8K

- Llama-3将原生上下文窗口长度从4K提升至8K,能够进一步处理更长的上下文信息
- 用户也可通过PI、NTK、YaRN等方法对模型进行长上下文的扩展,以支持更长文本的处理

#### ⚡ 使用分组查询注意力机制

- Llama-3采用了Llama-2中大参数量版本应用的分组查询注意力(GQA)机制,能够进一步提升模型的效率

#### 🗒 全新的指令模板

- Llama-3-Instruct采用了全新的指令模板,与Llama-2-chat不兼容,使用时应遵循官方指令模板(见[指令模板](#指令模板))

## 模型下载

### 模型选择指引

以下是本项目的模型对比以及建议使用场景。**如需聊天交互,请选择Instruct版。**

| 对比项 | Llama-3-Chinese-8B | Llama-3-Chinese-8B-Instruct |
| :-------------------- | :----------------------------------------------------: | :----------------------------------------------------------: |
| 模型类型 | 基座模型 | 指令/Chat模型(类ChatGPT) |
| 模型大小 | 8B | 8B |
| 训练类型 | Causal-LM (CLM) | 指令精调 |
| 训练方式 | LoRA + 全量emb/lm-head | LoRA + 全量emb/lm-head |
| 初始化模型 | [原版Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | v1: Llama-3-Chinese-8B
v2: [原版Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
v3: mix of inst/inst-v2/inst-meta |
| 训练语料 | 无标注通用语料(约120GB) | 有标注指令数据(约500万条) |
| 词表大小 | 原版词表(128,256) | 原版词表(128,256) |
| 支持上下文长度 | 8K | 8K |
| 输入模板 | 不需要 | 需要套用Llama-3-Instruct模板 |
| 适用场景 | 文本续写:给定上文,让模型生成下文 | 指令理解:问答、写作、聊天、交互等 |

以下是Instruct版本之间的对比,**如无明确偏好,请优先使用Instruct-v3版本。**

| 对比项 | Instruct-v1 | Instruct-v2 | Instruct-v3 |
| :-------------------- | :----------------------------------------------------: | :----------------------------------------------------------: | :-------------------: |
| 发布时间 | 2024/4/30 | 2024/5/8 | 2024/5/30 |
| 基模型 | [原版Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | [原版Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | (见训练方式) |
| 训练方式 | 第一阶段:120G中文语料预训练
第二阶段:500万指令数据精调 | 直接使用500万指令数据精调 | 使用inst-v1, inst-v2, inst-meta进行模型融合,并经过少量指令数据(~5K条)的精调得到 |
| 中文能力[1] | 49.3 / 51.5 | 51.6 / 51.6 | **55.2 / 54.8** 👍🏻 |
| 英文能力[1] | 63.21 | 66.68 | **66.81** 👍🏻 |
| 长文本能力[1] | 29.6 | **46.4** 👍🏻 | 40.5 |
| 大模型竞技场胜率 / Elo评分[2] | 49.4% / 1430 | 66.1% / 1559 | **83.6% / 1627** 👍🏻 |

> [!NOTE]
> [1] 中文能力效果来自C-Eval (valid);英文能力效果来自Open LLM Leaderboard (avg);长文本能力来自LongBench (avg);详细效果请参阅[💯模型效果](#模型效果)一节。
> [2] 大模型竞技场效果获取时间:2024/5/30,仅供参考。

### 下载地址

| 模型名称 | 完整版 | LoRA版 | GGUF版 |
| :------------------------ | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| **Llama-3-Chinese-8B-Instruct-v3**
(指令模型) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3)
[[🟣wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3) | N/A | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3-gguf) |
| **Llama-3-Chinese-8B-Instruct-v2**
(指令模型) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2)
[[🟣wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2-lora)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2-lora)
[[🟣wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2-lora) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v2-gguf) |
| **Llama-3-Chinese-8B-Instruct**
(指令模型) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct)
[[🟣wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-lora)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-lora)
[[🟣wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-lora) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-gguf) |
| **Llama-3-Chinese-8B**
(基座模型) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b)
[[🟣wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-lora)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-lora)
[[🟣wisemodel]](https://wisemodel.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-lora) | [[🤗Hugging Face]](https://huggingface.co/hfl/llama-3-chinese-8b-gguf)
[[🤖ModelScope]](https://modelscope.cn/models/ChineseAlpacaGroup/llama-3-chinese-8b-gguf) |

模型类型说明:

- **完整模型**:可直接用于训练和推理,无需其他合并步骤
- **LoRA模型**:需要与基模型合并并才能转为完整版模型,合并方法:[**💻 模型合并步骤**](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/model_conversion_zh)
- v1基模型:原版[Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
- v2基模型:原版[Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
- **GGUF模型**:[llama.cpp](https://github.com/ggerganov/llama.cpp)推出的量化格式,适配ollama等常见推理工具,推荐只需要做推理部署的用户下载;模型名后缀为`-im`表示使用了importance matrix进行量化,通常具有更低的PPL,建议使用(用法与常规版相同)
> [!NOTE]
> 若无法访问HF,可考虑一些镜像站点(如hf-mirror.com),具体方法请自行查找解决。

## 推理与部署

本项目中的相关模型主要支持以下量化、推理和部署方式,具体内容请参考对应教程。

| 工具 | 特点 | CPU | GPU | 量化 | GUI | API | vLLM | 教程 |
| :----------------------------------------------------------- | ---------------------------- | :--: | :--: | :--: | :--: | :--: | :--: |:--: |
| [llama.cpp](https://github.com/ggerganov/llama.cpp) | 丰富的GGUF量化选项和高效本地推理 | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | [[link]](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/llamacpp_zh) |
| [🤗transformers](https://github.com/huggingface/transformers) | 原生transformers推理接口 | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | [[link]](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/inference_with_transformers_zh) |
| [仿OpenAI API调用](https://platform.openai.com/docs/api-reference) | 仿OpenAI API接口的服务器Demo | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | [[link]](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/openai_api_zh) |
| [text-generation-webui](https://github.com/oobabooga/text-generation-webui) | 前端Web UI界面的部署方式 | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | [[link]](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/text-generation-webui_zh) |
| [LM Studio](https://lmstudio.ai) | 多平台聊天软件(带界面) | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | [[link]](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/lmstudio_zh) |
| [Ollama](https://github.com/ollama/ollama) | 本地运行大模型推理 | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | [[link]](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/ollama_zh) |

## 模型效果

为了评测相关模型的效果,本项目分别进行了生成效果评测和客观效果评测(NLU类),从不同角度对大模型进行评估。推荐用户在自己关注的任务上进行测试,选择适配相关任务的模型。

### 生成效果评测

- 本项目仿照[Fastchat Chatbot Arena](https://chat.lmsys.org/?arena)推出了模型在线对战平台,可浏览和评测模型回复质量。对战平台提供了胜率、Elo评分等评测指标,并且可以查看两两模型的对战胜率等结果。**⚔️ 模型竞技场:[http://llm-arena.ymcui.com](http://llm-arena.ymcui.com/)**
- examples目录中提供了Llama-3-Chinese-8B-Instruct和Chinese-Mixtral-Instruct的输出样例,并通过GPT-4-turbo进行了打分对比,**Llama-3-Chinese-8B-Instruct平均得分为8.1、Chinese-Mixtral-Instruct平均得分为7.8**。**📄 输出样例对比:[examples](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/blob/main/examples)**
- 本项目已入驻机器之心SOTA!模型平台,后期将实现在线体验:https://sota.jiqizhixin.com/project/chinese-llama-alpaca-3

### 客观效果评测

#### C-Eval

[C-Eval](https://cevalbenchmark.com)是一个全面的中文基础模型评估套件,其中验证集和测试集分别包含1.3K和12.3K个选择题,涵盖52个学科。C-Eval推理代码请参考本项目:[📖GitHub Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/ceval_zh)

| Models | Valid (0-shot) | Valid (5-shot) | Test (0-shot) | Test (5-shot) |
| ------------------------ | :-----------: | :-----------: | :-----------: | :-----------: |
| **Llama-3-Chinese-8B-Instruct-v3** | 55.2 | 54.8 | 52.1 | 52.4 |
| **Llama-3-Chinese-8B-Instruct-v2** | 51.6 | 51.6 | 49.7 | 49.8 |
| **Llama-3-Chinese-8B-Instruct** | 49.3 | 51.5 | 48.3 | 49.4 |
| **Llama-3-Chinese-8B** | 47.0 | 50.5 | 46.1 | 49.0 |
| [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | 51.3 | 51.3 | 49.5 | 51.0 |
| [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | 49.3 | 51.2 | 46.1 | 49.4 |
| [Chinese-Mixtral-Instruct](https://github.com/ymcui/Chinese-Mixtral) (8x7B) | 51.7 | 55.0 | 50.0 | 51.5 |
| [Chinese-Mixtral](https://github.com/ymcui/Chinese-Mixtral) (8x7B) | 45.8 | 54.2 | 43.1 | 49.1 |
| [Chinese-Alpaca-2-13B](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | 44.3 | 45.9 | 42.6 | 44.0 |
| [Chinese-LLaMA-2-13B](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | 40.6 | 42.7 | 38.0 | 41.6 |

#### CMMLU

[CMMLU](https://github.com/haonan-li/CMMLU)是另一个综合性中文评测数据集,专门用于评估语言模型在中文语境下的知识和推理能力,涵盖了从基础学科到高级专业水平的67个主题,共计11.5K个选择题。CMMLU推理代码请参考本项目:[📖GitHub Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/cmmlu_zh)

| Models | Test (0-shot) | Test (5-shot) |
| ------------------------ | :-----------: | :-----------: |
| **Llama-3-Chinese-8B-Instruct-v3** | 54.4 | 54.8 |
| **Llama-3-Chinese-8B-Instruct-v2** | 51.8 | 52.4 |
| **Llama-3-Chinese-8B-Instruct** | 49.7 | 51.5 |
| **Llama-3-Chinese-8B** | 48.0 | 50.9 |
| [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | 53.0 | 53.5 |
| [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | 47.8 | 50.8 |
| [Chinese-Mixtral-Instruct](https://github.com/ymcui/Chinese-Mixtral) (8x7B) | 50.0 | 53.0 |
| [Chinese-Mixtral](https://github.com/ymcui/Chinese-Mixtral) (8x7B) | 42.5 | 51.0 |
| [Chinese-Alpaca-2-13B](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | 43.2 | 45.5 |
| [Chinese-LLaMA-2-13B](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | 38.9 | 42.5 |

#### MMLU

[MMLU](https://github.com/hendrycks/test)是一个用于评测自然语言理解能力的英文评测数据集,是当今用于评测大模型能力的主要数据集之一,其中验证集和测试集分别包含1.5K和14.1K个选择题,涵盖57个学科。MMLU推理代码请参考本项目:[📖GitHub Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/mmlu_zh)

| Models | Valid (0-shot) | Valid (5-shot) | Test (0-shot) | Test (5-shot) |
| ------------------------ | :-----------: | :-----------: | :-----------: | :-----------: |
| **Llama-3-Chinese-8B-Instruct-v3** | 64.7 | 65.0 | 64.8 | 65.9 |
| **Llama-3-Chinese-8B-Instruct-v2** | 62.1 | 63.9 | 62.6 | 63.7 |
| **Llama-3-Chinese-8B-Instruct** | 60.1 | 61.3 | 59.8 | 61.8 |
| **Llama-3-Chinese-8B** | 55.5 | 58.5 | 57.3 | 61.1 |
| [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | 63.4 | 64.8 | 65.1 | 66.4 |
| [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | 58.6 | 62.5 | 60.5 | 65.0 |
| [Chinese-Mixtral-Instruct](https://github.com/ymcui/Chinese-Mixtral) (8x7B) | 65.1 | 69.6 | 67.5 | 69.8 |
| [Chinese-Mixtral](https://github.com/ymcui/Chinese-Mixtral) (8x7B) | 63.2 | 67.1 | 65.5 | 68.3 |
| [Chinese-Alpaca-2-13B](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | 49.6 | 53.2 | 50.9 | 53.5 |
| [Chinese-LLaMA-2-13B](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | 46.8 | 50.0 | 46.6 | 51.8 |

#### LongBench

[LongBench](https://github.com/THUDM/LongBench)是一个大模型长文本理解能力的评测基准,由6大类、20个不同的任务组成,多数任务的平均长度在5K-15K之间,共包含约4.75K条测试数据。以下是本项目模型在该中文任务(含代码任务)上的评测效果。LongBench推理代码请参考本项目:[📖GitHub Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/longbench_zh)

| Models | 单文档QA | 多文档QA | 摘要 | FS学习 | 代码 | 合成 | 平均 |
| ------------------------------------------------------------ | :------: | :------: | :--: | :----: | :--: | :--: | :--: |
| **Llama-3-Chinese-8B-Instruct-v3** | 20.3 | 28.8 | 24.5 | 28.1 | 59.4 | 91.9 | 40.5 |
| **Llama-3-Chinese-8B-Instruct-v2** | 57.3 | 27.1 | 13.9 | 30.3 | 60.6 | 89.5 | 46.4 |
| **Llama-3-Chinese-8B-Instruct** | 44.1 | 24.0 | 12.4 | 33.5 | 51.8 | 11.5 | 29.6 |
| **Llama-3-Chinese-8B** | 16.4 | 19.3 | 4.3 | 28.7 | 14.3 | 4.6 | 14.6 |
| [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | 55.1 | 15.1 | 0.1 | 24.0 | 51.3 | 94.5 | 40.0 |
| [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | 21.2 | 22.9 | 2.7 | 35.8 | 65.9 | 40.8 | 31.6 |
| [Chinese-Mixtral-Instruct](https://github.com/ymcui/Chinese-Mixtral) (8x7B) | 50.3 | 34.2 | 16.4 | 42.0 | 56.1 | 89.5 | 48.1 |
| [Chinese-Mixtral](https://github.com/ymcui/Chinese-Mixtral) (8x7B) | 32.0 | 23.7 | 0.4 | 42.5 | 27.4 | 14.0 | 23.3 |
| [Chinese-Alpaca-2-13B-16K](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | 47.9 | 26.7 | 13.0 | 22.3 | 46.6 | 21.5 | 29.7 |
| [Chinese-LLaMA-2-13B-16K](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | 36.7 | 17.7 | 3.1 | 29.8 | 13.8 | 3.0 | 17.3 |
| [Chinese-Alpaca-2-7B-64K](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | 44.7 | 28.1 | 14.4 | 39.0 | 44.6 | 5.0 | 29.3 |
| [Chinese-LLaMA-2-7B-64K](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) | 27.2 | 16.4 | 6.5 | 33.0 | 7.8 | 5.0 | 16.0 |

### Open LLM Leaderboard

[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)是由HuggingFaceH4团队发起的大模型综合能力评测基准(英文),包含ARC、HellaSwag、MMLU、TruthfulQA、Winograde、GSM8K等6个单项测试。以下是本项目模型在该榜单上的评测效果。

| Models | ARC | HellaS | MMLU | TQA | WinoG | GSM8K | 平均 |
| ------------------------------------------------------------ | :---: | :----: | :---: | :---: | :---: | :---: | :---: |
| **Llama-3-Chinese-8B-Instruct-v3** | 63.40 | 80.51 | 67.90 | 53.57 | 76.24 | 59.21 | 66.81 |
| **Llama-3-Chinese-8B-Instruct-v2** | 62.63 | 79.72 | 66.48 | 53.93 | 76.72 | 60.58 | 66.68 |
| **Llama-3-Chinese-8B-Instruct** | 61.26 | 80.24 | 63.10 | 55.15 | 75.06 | 44.43 | 63.21 |
| **Llama-3-Chinese-8B** | 55.88 | 79.53 | 63.70 | 41.14 | 77.03 | 37.98 | 59.21 |
| [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | 60.75 | 78.55 | 67.07 | 51.65 | 74.51 | 68.69 | 66.87 |
| [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | 59.47 | 82.09 | 66.69 | 43.90 | 77.35 | 45.79 | 62.55 |
| [Chinese-Mixtral-Instruct](https://github.com/ymcui/Chinese-Mixtral) (8x7B) | 67.75 | 85.67 | 71.53 | 57.46 | 83.11 | 55.65 | 70.19 |
| [Chinese-Mixtral](https://github.com/ymcui/Chinese-Mixtral) (8x7B) | 67.58 | 85.34 | 70.38 | 46.86 | 82.00 | 0.00 | 58.69 |

*注:MMLU结果与不同的主要原因是评测脚本不同导致。*

### 量化效果评测

在llama.cpp下,测试了Llama-3-Chinese-8B(基座模型)的量化性能,如下表所示。实测速度相比二代Llama-2-7B略慢。

| | F16 | Q8_0 | Q6_K | Q5_K | Q5_0 | Q4_K | Q4_0 | Q3_K | Q2_K |
| ------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | -----: |
| **Size (GB)** | 14.97 | 7.95 | 6.14 | 5.34 | 5.21 | 4.58 | 4.34 | 3.74 | 2.96 |
| **BPW** | 16.00 | 8.50 | 6.56 | 5.70 | 5.57 | 4.89 | 4.64 | 4.00 | 3.16 |
| **PPL** | 5.130 | 5.135 | 5.148 | 5.181 | 5.222 | 5.312 | 5.549 | 5.755 | 11.859 |
| **PP Speed** | 5.99 | 6.10 | 7.17 | 7.34 | 6.65 | 6.38 | 6.00 | 6.85 | 6.43 |
| **TG Speed** | 44.03 | 26.08 | 21.61 | 22.33 | 20.93 | 18.93 | 17.09 | 22.50 | 19.21 |

> [!NOTE]
>
> - 模型大小:单位GB
> - BPW(Bits-Per-Weight):单位参数比特,例如Q8_0实际平均精度为8.50
> - PPL(困惑度):以8K上下文测量(原生支持长度),数值越低越好
> - PP/TG速度:提供了Apple M3 Max(Metal)的指令处理(PP)和文本生成(TG)速度,单位ms/token,数值越低越快

## 训练与精调

### 手动训练与精调

- 使用无标注数据进行预训练:[📖预训练脚本Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/pt_scripts_zh)
- 使用有标注数据进行指令精调:[📖指令精调脚本Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/sft_scripts_zh)

### 指令模板

本项目Llama-3-Chinese-Instruct沿用原版Llama-3-Instruct的指令模板。以下是一组对话示例:

> <|begin_of_text|><|start_header_id|>system<|end_header_id|>
>
> You are a helpful assistant. 你是一个乐于助人的助手。<|eot_id|><|start_header_id|>user<|end_header_id|>
>
> 你好<|eot_id|><|start_header_id|>assistant<|end_header_id|>
>
> 你好!有什么可以帮助你的吗?<|eot_id|>

### 指令数据

以下是本项目开源的部分指令数据。详情请查看:[📚 指令数据](./data)

| 数据名称 | 说明 | 数量 |
| ------------------------------------------------------------ | :----------------------------------------------------------- | :--: |
| [alpaca_zh_51k](https://huggingface.co/datasets/hfl/alpaca_zh_51k) | 使用gpt-3.5翻译的Alpaca数据 | 51K |
| [stem_zh_instruction](https://huggingface.co/datasets/hfl/stem_zh_instruction) | 使用gpt-3.5爬取的STEM数据,包含物理、化学、医学、生物学、地球科学 | 256K |
| [ruozhiba_gpt4](https://huggingface.co/datasets/hfl/ruozhiba_gpt4) | 使用GPT-4o和GPT-4T获取的ruozhiba问答数据 | 2449 |

## 常见问题

请在提交Issue前务必先查看FAQ中是否已存在解决方案。具体问题和解答请参考本项目 [📖GitHub Wiki](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3/wiki/faq_zh)

```
问题1:为什么没有像一期、二期项目一样做词表扩充?
问题2:会有70B版本发布吗?
问题3:为什么指令模型不叫Alpaca了?
问题4:本仓库模型能否商用?
问题5:为什么不对模型做全量预训练而是用LoRA?
问题6:为什么Llama-3-Chinese对话效果不好?
问题7:为什么指令模型会回复说自己是ChatGPT?
问题8:Instruct模型的v1(原版)和v2有什么区别?
```

## 引用

如果您使用了本项目的相关资源,请参考引用本项目的技术报告:https://arxiv.org/abs/2304.08177

```
@article{chinese-llama-alpaca,
title={Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca},
author={Cui, Yiming and Yang, Ziqing and Yao, Xin},
journal={arXiv preprint arXiv:2304.08177},
url={https://arxiv.org/abs/2304.08177},
year={2023}
}
```

针对是否扩充词表的分析,可参考引用:https://arxiv.org/abs/2403.01851

```
@article{chinese-mixtral,
title={Rethinking LLM Language Adaptation: A Case Study on Chinese Mixtral},
author={Cui, Yiming and Yao, Xin},
journal={arXiv preprint arXiv:2403.01851},
url={https://arxiv.org/abs/2403.01851},
year={2024}
}
```

## 免责声明

本项目基于由Meta发布的Llama-3模型进行开发,使用过程中请严格遵守Llama-3的[开源许可协议](https://github.com/meta-llama/llama3/blob/main/LICENSE)。如果涉及使用第三方代码,请务必遵从相关的开源许可协议。模型生成的内容可能会因为计算方法、随机因素以及量化精度损失等影响其准确性,因此,本项目不对模型输出的准确性提供任何保证,也不会对任何因使用相关资源和输出结果产生的损失承担责任。如果将本项目的相关模型用于商业用途,开发者应遵守当地的法律法规,确保模型输出内容的合规性,本项目不对任何由此衍生的产品或服务承担责任。

## 问题反馈

如有疑问,请在GitHub Issue中提交。礼貌地提出问题,构建和谐的讨论社区。

- 在提交问题之前,请先查看FAQ能否解决问题,同时建议查阅以往的issue是否能解决你的问题。
- 提交问题请使用本项目设置的Issue模板,以帮助快速定位具体问题。
- 重复以及与本项目无关的issue会被[stable-bot](https://github.com/marketplace/stale)处理,敬请谅解。