Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/youknowone/ring

Python cache interface with clean API and built-in memcache & redis + asyncio support.
https://github.com/youknowone/ring

aiomcache aioredis asyncio cache diskcache django lru memcache python python2 python3 redis

Last synced: 2 days ago
JSON representation

Python cache interface with clean API and built-in memcache & redis + asyncio support.

Awesome Lists containing this project

README

        

Ring
====

.. image:: https://badges.gitter.im/ring-cache/community.svg
:alt: Join the chat at https://gitter.im/ring-cache/community
:target: https://gitter.im/ring-cache/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge

.. image:: https://github.com/youknowone/ring/actions/workflows/python-package.yml/badge.svg
.. image:: https://codecov.io/gh/youknowone/ring/graph/badge.svg
:target: https://codecov.io/gh/youknowone/ring

Let's concentrate on code, not on storages.

Ring shows a way to control cache in point of view of code - not about storages.
Ring's decorator is convenient but also keeps fluency for general scenarios.

asyncio support for Python3.5+!

Take advantage of perfectly explicit and fully automated cache interface.
Ring decorators convert your functions to cached version of them, with extra
control methods.

Documentation
-------------

Full documentation with examples and references:
``_

- Function/method support.
- asyncio support.
- Django support.
- Bulk access support.

Function cache
--------------

.. code:: python

import ring
import memcache
import requests

mc = memcache.Client(['127.0.0.1:11211'])

# working for mc, expire in 60sec
@ring.memcache(mc, time=60)
def get_url(url):
return requests.get(url).content

# normal way - it is cached
data = get_url('http://example.com')

It is a normal smart cache flow.

But ring is different when you want to explicitly control it.

.. code:: python

# delete the cache
get_url.delete('http://example.com')
# get cached data or None
data_or_none = get_url.get('http://example.com')

# get internal cache key
key = get_url.key('http://example.com')
# and access directly to the backend
direct_data = mc.get(key)

Method cache
------------

.. code:: python

import ring
import redis

rc = redis.StrictRedis()

class User(dict):
def __ring_key__(self):
return self['id']

# working for rc, no expiration
# using json coder for non-bytes cache data
@ring.redis(rc, coder='json')
def data(self):
return self.copy()

# parameters are also ok!
@ring.redis(rc, coder='json')
def child(self, child_id):
return {'user_id': self['id'], 'child_id': child_id}

user = User(id=42, name='Ring')

# create and get cache
user_data = user.data() # cached
user['name'] = 'Ding'
# still cached
cached_data = user.data()
assert user_data == cached_data
# refresh
updated_data = user.data.update()
assert user_data != updated_data

# id is the cache key so...
user2 = User(id=42)
# still hitting the same cache
assert updated_data == user2.data()

Installation
------------

PyPI is the recommended way.

.. sourcecode:: shell

$ pip install ring

To browse versions and tarballs, visit:
``_

To use memcached or redis, don't forget to install related libraries.
For example: python-memcached, python3-memcached, pylibmc, redis-py, Django etc

It may require to install and run related services on your system too.
Look for `memcached` and `redis` for your system.

Contributors
------------

See contributors list on:
``_