Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/younatics/deeplearningtomobile
Curated way to convert deep learning model to mobile⚡️
https://github.com/younatics/deeplearningtomobile
coreml coremltools keras tensorflow tensorflow-lite tensorflow-mobile tf-coreml toco
Last synced: about 2 months ago
JSON representation
Curated way to convert deep learning model to mobile⚡️
- Host: GitHub
- URL: https://github.com/younatics/deeplearningtomobile
- Owner: younatics
- License: mit
- Created: 2018-10-03T03:43:18.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2018-10-10T05:53:48.000Z (about 6 years ago)
- Last Synced: 2023-10-04T21:49:19.807Z (about 1 year ago)
- Topics: coreml, coremltools, keras, tensorflow, tensorflow-lite, tensorflow-mobile, tf-coreml, toco
- Language: Jupyter Notebook
- Homepage:
- Size: 1.71 MB
- Stars: 48
- Watchers: 3
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Deep Learning To Mobile ⚡️
### Curated way to convert deep learning model to mobile.This repository will show you how to put your own model directly into mobile(iOS/Android) with basic example. First part is about **deep learning model to mobile machine learning framework**, and second part is about **deep learning framework to mobile machine learning framework**
## Intro
#### Part 1. Deep learning model to mobile machine learning framework
| Neural Network | CoreML | TensorFlow Mobile | Tensorflow Lite |
| :-: | :---: | :---------------: | :-------------: |
| Feedforward NN | ✔️ | ✔️ | ✔️ |
| Convolutional NN | ✔️ | ✔️ | ✔️ |
| Recurrent NN | ✔️ | ✔️ | ❗️ |#### Part 2. Deep learning framework to mobile machine learning framework
| Framework | CoreML | TensorFlow Mobile | Tensorflow Lite |
| :-------: | :----: | :---------------: | :-------------: |
| Tensorflow | `tf-coreml` | `tensorflow` | `tensorflow` |
| Pytorch | `onnx` | ← | ← |
| Keras | `coremltools` | `tensorflow backend` | ← |
| Caffe | `coremltools` | `caffe-tensorflow` | ← |# Part 0.
### Basic FFNN example
I'll use Golbin code in this [TensorFlow-Tutorials](https://github.com/golbin/TensorFlow-Tutorials/blob/master/04%20-%20Neural%20Network%20Basic/02%20-%20Deep%20NN.py), and simple Keras code to convert. I use two examples because there are different limits.#### TensorFlow
```python
import tensorflow as tf
import numpy as npx_data = np.array(
[[0, 0], [1, 0], [1, 1], [0, 0], [0, 0], [0, 1]])y_data = np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 0, 1]
])global_step = tf.Variable(0, trainable=False, name='global_step')
X = tf.placeholder(tf.float32, name='Input')
Y = tf.placeholder(tf.float32, name='Output')with tf.name_scope('layer1'):
W1 = tf.Variable(tf.random_uniform([2, 10], -1., 1.), name='W1')
b1 = tf.Variable(tf.zeros([10]), name='b1')
L1 = tf.add(tf.matmul(X, W1), b1, name='L1')
L1 = tf.nn.relu(L1)
with tf.name_scope('layer2'):
W2 = tf.Variable(tf.random_uniform([10, 3], -1., 1.), name='W2')
b2 = tf.Variable(tf.zeros([3]), name='b2')
model = tf.add(tf.matmul(L1, W2), b2, name='model')
prediction = tf.argmax(model, 1, name='prediction')cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y, logits=model), name='cost')
optimizer = tf.train.AdamOptimizer(learning_rate=0.01, name='optimizer')
train_op = optimizer.minimize(cost, global_step=global_step)init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)saver = tf.train.Saver(tf.global_variables())
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('./logs', sess.graph)for step in range(30):
sess.run(train_op, feed_dict={X: x_data, Y: y_data})if (step + 1) % 30 == 0:
print(step + 1, sess.run(cost, feed_dict={X: x_data, Y: y_data}))
tf.train.write_graph(sess.graph_def, '.', './model/FFNN.pbtxt')
saver.save(sess, './model/FFNN.ckpt', global_step=global_step)
break
target = tf.argmax(Y, 1)
is_correct = tf.equal(prediction, target)
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
print('Accuracy: %.2f' % sess.run(accuracy * 100, feed_dict={X: x_data, Y: y_data}))
```#### Keras
```python
import numpy as np
import tensorflow as tfx_data = np.array(
[[0, 0], [1, 0], [1, 1], [0, 0], [0, 0], [0, 1]])y_data = np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[1, 0, 0],
[1, 0, 0],
[0, 0, 1]
])model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(10, input_dim=2,activation="relu"))
model.add(tf.keras.layers.Dense(2, activation="relu", kernel_initializer="uniform"))
model.add(tf.keras.layers.Dense(3))
model.add(tf.keras.layers.Activation("softmax"))adam = tf.keras.optimizers.Adam(lr=0.01)
model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
model.summary()reult = model.fit(x_data, y_data, shuffle=True, epochs=10, batch_size=2, validation_data=(x_data, y_data))
```# Part 1.
### Deep learning model to mobile machine learning framework
## CoreML![CoreML](https://github.com/younatics/DeepLearningToMobile/blob/master/img/coreml.png)
- ML Framework supported by Apple, using `.mlmodel` extension
- Automatically generated wrapper for iOS(Swift or Objective-C)
- | Neural Network | CoreML |
| :-: | :---: |
| Feedforward NN | ✔️ |
| Convolutional NN | ✔️ |
| Recurrent NN | ✔️ |### REFERENCE
- [Core ML](https://developer.apple.com/documentation/coreml)
- [Converting Trained Models to Core ML](https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml)## TensorFlow Mobile🔒
#### TensorFlow Mobile is now deprecated
![tensorflowmobile](https://github.com/younatics/DeepLearningToMobile/blob/master/img/tensorflowmobile.png)- ML Framework supported by Google, using `.pb` extension
- Support Java for Android, Objective-C++ for iOS
- | Neural Network | TensorFlow Mobile |
| :-: | :---: |
| Feedforward NN | ✔️ |
| Convolutional NN | ✔️ |
| Recurrent NN | ✔️ |
### Reference
- [TensorFlow Mobile](https://www.tensorflow.org/lite/tfmobile/)
- [TensorFlow on Mobile: Tutorial](https://towardsdatascience.com/tensorflow-on-mobile-tutorial-1-744703297267)## TensorFlow Lite
- ML Framework supported by Google, using `.tflite` extension
- Support Java for Android, Objective-C++ for iOS
- **Recommand way** by Google to use tensorflow in Mobile
- | Neural Network | TensorFlow Mobile |
| :-: | :---: |
| Feedforward NN | ✔️ |
| Convolutional NN | ✔️ |
| Recurrent NN | RNN is not supported see more information in [this link](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/g3doc/tf_ops_compatibility.md) |### Reference
- [TensorFlow Lite](https://www.tensorflow.org/lite/)
- [TensorFlow Lite & TensorFlow Compatibility Guide](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/g3doc/tf_ops_compatibility.md)# Part 2.
### Deep learning framework to mobile machine learning framework## TensorFlow to Tensorflow Mobile
We can get `FFNN.pbtxt`and `FFNN.ckpt-90` in Part 0 code.
#### Freeze graph using `freeze_graph` from `tensorflow.python.tools````python
from tensorflow.python.tools import freeze_graphfreeze_graph.freeze_graph("model/FFNN.pbtxt", "",
"", "model/FFNN.ckpt-90", "Output",
"", "",
"FFNN_frozen_graph.pb", True, "")
```
Now you can use `FFNN_frozen_graph.pb` in TensorFlow Mobile!| Neural Network | `freeze_graph` |
| :-: | :---: |
| Feedforward NN | ✔️ |
| Convolutional NN | ✔️ |
| Recurrent NN | ✔️ |## Check your Tensor graph
You have to check frozen tensor graph```python
def load_graph(frozen_graph_filename):
with tf.gfile.GFile(frozen_graph_filename, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name="")return graph
graph = load_graph('FFNN_frozen_graph.pb')for op in graph.get_operations():
print(op.name)
```### Reference
- [Graphs and Sessions](https://www.tensorflow.org/guide/graphs)## TensorFlow to CoreML (iOS)
`tf-coreml` is the recommended way from Apple to convert tensorflow to CoreML
#### `tf-coreml` currently could not convert cycled graph like RNN... etc [#124](https://github.com/tf-coreml/tf-coreml/issues/124)```python
import tfcoremlmlmodel = tfcoreml.convert(
tf_model_path = 'FFNN_frozen_graph.pb',
mlmodel_path = 'FFNN.mlmodel',
output_feature_names = ['layer2/prediction:0'],
input_name_shape_dict = {'Input:0': [1, 2]})
```
Now you can use `FFNN.mlmodel` in iOS project!| Neural Network | `tf-coreml` |
| :-: | :---: |
| Feedforward NN | ✔️ |
| Convolutional NN | ✔️ |
| Recurrent NN | ✖️ |### Reference
- [tf-coreml](https://github.com/tf-coreml/tf-coreml)## TensorFlow to TensorFlow Lite (Android)
`toco` is the recommended way from Google to convert TensorFlow to TensorFlow Lite```python
import tensorflow as tfgraph_def_file = "FFNN_frozen_graph.pb"
input_arrays = ["Input"]
output_arrays = ["layer2/prediction"]converter = tf.contrib.lite.TocoConverter.from_frozen_graph(
graph_def_file, input_arrays, output_arrays)
tflite_model = converter.convert()
open("FFNN.tflite", "wb").write(tflite_model)
```
Now you can use `FFNN.tflite` in Android project!| Neural Network | `toco` |
| :-: | :---: |
| Feedforward NN | ✔️ |
| Convolutional NN | ✔️ |
| Recurrent NN | ✖️ |### Reference
- [Toco](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/lite/toco)
- [Intro to Machine Learning on Android — How to convert a custom model to TensorFlow Lite](https://heartbeat.fritz.ai/intro-to-machine-learning-on-android-how-to-convert-a-custom-model-to-tensorflow-lite-e07d2d9d50e3)## Keras to CoreML (iOS)
`coremltools` is the recommended way from Apple to convert Keras to CoreML```python
import coremltoolscoreml_model = coremltools.converters.keras.convert(model)
coreml_model.save('FFNN.mlmodel')
```Now you can use `FFNN.mlmodel` in Android project!
| Neural Network | `coremltools` |
| :-: | :---: |
| Feedforward NN | ✔️ |
| Convolutional NN | ✔️ |
| Recurrent NN | ✔️ |### Reference
- [coremltools](https://github.com/apple/coremltools)## Keras to TensorFlow Lite (Android)
`toco` is the recommended way from Google to convert Keras to TensorFlow LiteMake `.h5` Keras extension and then convert it to `.tflie` extension
```python
keras_file = "FFNN.h5"
tf.keras.models.save_model(model, keras_file)converter = tf.contrib.lite.TocoConverter.from_keras_model_file(keras_file)
tflite_model = converter.convert()
open("FFNN.tflite", "wb").write(tflite_model)
```Now you can use `FFNN.tflite` in Android project!
| Neural Network | `toco` |
| :-: | :---: |
| Feedforward NN | ✔️ |
| Convolutional NN | ✔️ |
| Recurrent NN | ✖️ |### Reference
- [TensorFlow Lite Optimizing Converter & Interpreter Python API reference](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/toco/g3doc/python_api.md)## Author
[younatics](https://twitter.com/younatics)## License
DeepLearningToMobile is available under the MIT license. See the LICENSE file for more info.