https://github.com/youssefHosni/Hands-On-LangChain-for-LLM-Applications-Development
Practical LangChain tutorials for LLM applications development
https://github.com/youssefHosni/Hands-On-LangChain-for-LLM-Applications-Development
Last synced: about 1 month ago
JSON representation
Practical LangChain tutorials for LLM applications development
- Host: GitHub
- URL: https://github.com/youssefHosni/Hands-On-LangChain-for-LLM-Applications-Development
- Owner: youssefHosni
- Created: 2023-11-17T05:56:47.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-05-11T23:04:59.000Z (over 1 year ago)
- Last Synced: 2024-05-12T00:19:18.355Z (over 1 year ago)
- Size: 25.4 KB
- Stars: 61
- Watchers: 3
- Forks: 12
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- trackawesomelist - youssefHosni/Hands-On-LangChain-for-LLM-Applications-Development (⭐123)
README
# Hands-On-LangChain-for-LLM-Applications-Development
Practical LangChain tutorials for LLM applications development
[](https://youssefh.substack.com/)
[](https://medium.com/@yousefhosni)
[](https://www.kaggle.com/youssef19)
[](https://www.youtube.com/channel/UCeEcSgRzYFuVt-2Yk1ULdhQ)

## LangChain Basics ##
| Topic | Blog | Notebook | Video Tutorial |
|-----|--------|----------|----------|
|Hands-On LangChain for LLM Applications Development: Prompt Templates |[](https://medium.com/towards-artificial-intelligence/hands-on-langchain-for-llm-applications-development-prompt-templates-fb81450dcefe?sk=585a90124ebcfeb2277ec4f8121bb17b) | [](https://www.kaggle.com/code/youssef19/langchain-prompt-templates)| [](https://youtu.be/5V64btczj9o?si=sYVdePu0__cPG_G9) |
|Hands-On LangChain for LLM Applications Development: Output Parsing |[](https://medium.com/towards-artificial-intelligence/hands-on-langchain-for-llm-applications-development-output-parsing-876354434462?sk=80376f6f6c0ab026149b49e8bb0efaaa) | [](https://www.kaggle.com/code/youssef19/langchain-output-parsing)| []() |
|Hands-On LangChain for LLMs App Development: Chains |[](https://medium.com/towards-artificial-intelligence/understanding-langchain-chains-for-large-language-model-application-development-b63709c59612?sk=d71ac010b7be91536b9f74b16cae3765) | [](https://www.kaggle.com/code/youssef19/understanding-langchain-chains)| []() |
|Hands-On LangChain for LLMs App: ChatBots Memory |[](https://medium.com/towards-artificial-intelligence/hands-on-langchain-for-llms-app-chatbots-memory-9394030e5a9e?sk=dbd6da74ab4d02eff233e4cb5d3c16a6) | [](https://www.kaggle.com/code/youssef19/langchain-chatbots-memory)| []() |
|Hands-On LangChain for LLMs App: Evaluating LLM Applications |[](https://medium.com/towards-artificial-intelligence/evaluating-llm-applications-using-langchain-d8641f6ce5f3?sk=02ed92e3f08becedd2cd367f55feeb26) | [](https://www.kaggle.com/code/youssef19/evaluating-llm-applications-using-langchain)| []() |
|Building LLM Agents Using LangChain & OpenAI API |[](https://medium.com/towards-artificial-intelligence/building-llm-agents-using-langchain-openai-api-cf3f8a1e5d76?sk=d39a2c188d092e1dfcfeaddf0f60aded) | [](https://www.kaggle.com/code/youssef19/building-llm-agents-using-langchain-openai-api)| []() |
--------------------------------------------------------
## Retrieval Augmented Generation (RAG) with LangChain ##
| Topic | Blog | Notebook | Video Tutorial |
|-----|--------|----------|----------|
|Hands-On LangChain for LLM Applications Development: Documents Loading |[](https://medium.com/towards-artificial-intelligence/hands-on-langchain-for-llm-applications-development-documents-loading-43d889644845?sk=c11bc86e7f1dc9da330ca9bc14d2aa5c) | [](https://www.kaggle.com/code/youssef19/documents-loading-with-langchain)| []() |
|Hands-On LangChain for LLM Applications Development: Documents Splitting Part 1 |[](https://medium.com/towards-artificial-intelligence/hands-on-langchain-for-llm-applications-development-documents-splitting-part-1-57f544a62ecb?sk=a873c73e0ad8b031b3fb5f90278ffdf9) | [](https://www.kaggle.com/code/youssef19/documents-splitting-with-langchain)| []() |
|Hands-On LangChain for LLM Applications Development: Documents Splitting Part 2 |[](https://medium.com/towards-artificial-intelligence/hands-on-langchain-for-llm-applications-development-documents-splitting-part-2-247009463168?sk=bb8e8f709a8ae17dbf74b7007db7d573) | [](https://www.kaggle.com/code/youssef19/documents-splitting-with-langchain)| []() |
|Hands-On LangChain for LLM Applications Development: Vector Database & Text Embeddings |[](https://medium.com/towards-artificial-intelligence/hands-on-langchain-for-llm-applications-development-vector-database-text-embeddings-b8528d83546c?sk=addb2f94cd23891b5ae8708705fa88d9) | [](https://www.kaggle.com/code/youssef19/hands-on-langchain-for-llm-applications-developmen)| []() |
|Hands-On LangChain for LLM Applications Development: Information Retrieval |[](https://medium.com/towards-artificial-intelligence/hands-on-langchain-for-llm-applications-development-information-retrieval-764c3e4d2d44?sk=1496e356ba615f2a425401debb7d236a) | [](https://www.kaggle.com/code/youssef19/information-retrieval-with-langchain)| []() |
|Hands-On LangChain for LLMs App: Answering Questions From Documents |[](https://medium.com/gitconnected/hands-on-langchain-for-llms-app-answering-questions-from-documents-01f6741ec7d4?sk=7a1dcfae9fce5aea23313a9a3cf9f64c) | [](https://www.kaggle.com/code/youssef19/answering-questions-from-documents-using-langchain)| []() |
|Hands-On LangChain for LLMs App: Building RAG Application with LangChain |[]() | [](https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbGFoWTNxZUNuUzY0WjVMV0tiMkFtZ2V2MVh0UXxBQ3Jtc0tuYi1ocF96ZTEwM3BBNFVBRDJzU1lZQWxsQzNfVUg3WUlYN3NwNXQyNjBaMXFUcVh4WVBpOVJkSHhJNlEteGhYREZWVHJXWHZnN3d3WXlhR2RSWnhHQy1XMHhjSUFocEZLQTZZN0Zjd3piQnVZOHFNaw&q=https%3A%2F%2Fcolab.research.google.com%2Fdrive%2F1ZPQOBQE-BH-eRrCD-bY0b71l_2KF-aTI%3Fusp%3Dsharing&v=EHCjY_GoG0w)| [](https://youtu.be/EHCjY_GoG0w?si=pSXHM9aC7RT7-qpb) |
## Advanced LangChain Techniques ##
| Topic | Blog | Notebook | Video Tutorial |
|-----|--------|----------|----------|
|Hands-On Introduction to Open AI Function Calling |[](https://open.substack.com/pub/youssefh/p/hands-on-introduction-to-open-ai?r=1sqbmi&utm_campaign=post&utm_medium=web) | []()| []() |
|LangChain Expression Language (LCEL) |[]() | []()| []() |
|Tagging and Extraction Using OpenAI functions |[]() | []()| []() |
|Tools and Routing using LangChain |[]() | []()| []() |
|Conversational agent with LangChain |[]() | []()| []() |
|Hands-On LangChain for LLMs App: Chat with Your Files |[](https://medium.com/towards-artificial-intelligence/hands-on-langchain-for-llms-app-chat-with-your-files-d1636e33a97d?sk=1b0b1eeb8d6a35db563ecac4e9eb8628) | [](https://www.kaggle.com/code/youssef19/chat-with-pdf-using-openai-assistant-api)| []() |
---------------------------------------------------------
## Building LLM Agents with LangGraph ##
| Topic | Blog | Notebook | Video Tutorial |
|-----|--------|----------|----------|
|Introduction to LLM Agents & LangGraph |[](https://open.substack.com/pub/youssefh/p/building-llm-agents-with-langgraph?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
|Building Simple ReAct Agent from Scratch |[](https://open.substack.com/pub/youssefh/p/building-llm-agents-with-langgraph-699?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
|LangGraph Components & Building LangGraph Search Agent |[](https://open.substack.com/pub/youssefh/p/building-llm-agents-with-langgraph-634?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
|Agentic Search Tools |[](https://open.substack.com/pub/youssefh/p/building-agents-with-langgraph-course?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
|Persistence and Streaming |[](https://open.substack.com/pub/youssefh/p/building-agents-with-langgraph-course-bd2?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
|Human in the Loop |[](https://open.substack.com/pub/youssefh/p/building-agents-with-langgraph-course-e76?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
|Building Essay Writer Agent |[](https://open.substack.com/pub/youssefh/p/building-agents-with-langgraph-course-92e?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
---------------------------------------------------------
## Managing Agentic Memory with LangMem ##
| Topic | Blog | Notebook | Video Tutorial |
|-----|--------|----------|----------|
|Introduction to Agentic Meomery |[](https://open.substack.com/pub/youssefh/p/managing-agentic-meomery-with-langmem?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
|Building Baseline Writing Assistant Agent |[](https://open.substack.com/pub/youssefh/p/managing-agentic-meomery-with-langmem-561?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
|Building Writing Assistant Agent with Semantic Memory |[](https://open.substack.com/pub/youssefh/p/managing-agentic-meomery-with-langmem-9e8?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
|Building Writing Assistant Agent with Semantic & Episodic Memory |[](https://open.substack.com/pub/youssefh/p/managing-agentic-meomery-with-langmem-99a?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
|Building Agent with Semantic, Episodic & Procedural Memory |[](https://open.substack.com/pub/youssefh/p/building-agent-with-semantic-episodic?r=1sqbmi&utm_campaign=post&utm_medium=web&showWelcomeOnShare=false) | []()| []() |
---------------------------------------------------------
## Getting Started with LangSmith ##
| Topic | Blog | Notebook | Video Tutorial |
|-----|--------|----------|----------|
|What Is LangSmith? |[]() | []()| []() |
|Tracing with LangSmith |[]() | []()| []() |
|Playground & Prompts in LangSmith |[]() | []()| []() |
|Datasets & Evaluations in LangSmith |[]() | []()| []() |
|Annotation Queues with LangSmith |[]() | []()| []() |
|Automations & Online Evaluation with LangSmith |[]() | []()| []() |
|Dashboards in LangSmith |[]() | []()| []() |