Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yoyololicon/pytorch-nmf
A pytorch package for non-negative matrix factorization.
https://github.com/yoyololicon/pytorch-nmf
1d-convolution beta-divergence em-algorithm gpu kl-divergence nmf nonnegative-matrix-factorization plca pytorch siplca
Last synced: 2 months ago
JSON representation
A pytorch package for non-negative matrix factorization.
- Host: GitHub
- URL: https://github.com/yoyololicon/pytorch-nmf
- Owner: yoyololicon
- License: mit
- Created: 2018-10-31T06:50:21.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2024-07-25T11:13:41.000Z (5 months ago)
- Last Synced: 2024-10-04T10:34:17.377Z (3 months ago)
- Topics: 1d-convolution, beta-divergence, em-algorithm, gpu, kl-divergence, nmf, nonnegative-matrix-factorization, plca, pytorch, siplca
- Language: Python
- Homepage: https://pytorch-nmf.readthedocs.io/
- Size: 5.49 MB
- Stars: 225
- Watchers: 8
- Forks: 24
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
# Non-negative Matrix Fatorization in PyTorch
[![build](https://github.com/yoyololicon/pytorch-NMF/actions/workflows/python-package.yml/badge.svg)](https://github.com/yoyololicon/pytorch-NMF/actions/workflows/python-package.yml)
[![Upload Python Package](https://github.com/yoyololicon/pytorch-NMF/actions/workflows/python-publish.yml/badge.svg)](https://github.com/yoyololicon/pytorch-NMF/actions/workflows/python-publish.yml)
[![codecov](https://codecov.io/gh/yoyololicon/pytorch-NMF/branch/master/graph/badge.svg?token=9UXAZ6PG2N)](https://codecov.io/gh/yoyololicon/pytorch-NMF)
[![Documentation Status](https://readthedocs.org/projects/pytorch-nmf/badge/?version=latest)](https://pytorch-nmf.readthedocs.io/en/latest/?badge=latest)
[![PyPI version](https://badge.fury.io/py/torchnmf.svg)](https://badge.fury.io/py/torchnmf)PyTorch is not only a good deep learning framework, but also a fast tool when it comes to matrix operations and convolutions on large data.
A great example is [PyTorchWavelets](http://github.com/tomrunia/PyTorchWavelets).In this package I implement NMF, PLCA and their deconvolutional variations in PyTorch based on `torch.nn.Module`,
so the models can be moved freely among CPU/GPU devices and utilize parallel computation of cuda.
We also utilize the computational graph from `torch.autograd` to derive updated coefficients so the amount of codes is reduced and easy to maintain.# Modules
## NMF
Basic NMF and NMFD module minimizing beta-divergence using multiplicative update rules.
The interface is similar to `sklearn.decomposition.NMF` with some extra options.
* `NMF`: Original NMF algorithm.
* `NMFD`: 1-D deconvolutional NMF algorithm.
* `NMF2D`: 2-D deconvolutional NMF algorithm.
* `NMF3D`: 3-D deconvolutional NMF algorithm.## PLCA
Basic PLCA and SIPLCA module using EM algorithm to minimize
KL-divergence between the target distribution and the estimated
distribution.* `PLCA`: Original PLCA (Probabilistic Latent Component Analysis)
algorithm.
* `SIPLCA`: Shift-Invariant PLCA algorithm (similar to NMFD).
* `SIPLCA2`: 2-D deconvolutional SIPLCA algorithm.
* `SIPLCA3`: 3-D deconvolutional SIPLCA algorithm.## Usage
Here is a short example of decompose a spectrogram using deconvolutional NMF:
```python
import torch
import librosa
from torchnmf.nmf import NMFD
from torchnmf.metrics import kl_divy, sr = librosa.load(librosa.util.example_audio_file())
y = torch.from_numpy(y)
windowsize = 2048
S = torch.stft(y, windowsize,
window=torch.hann_window(windowsize),
return_complex=True).abs().cuda()
S = S.unsqueeze(0)R = 8 # number of components
T = 400 # size of convolution windownet = NMFD(S.shape, rank=R, T=T).cuda()
# run extremely fast on gpu
net.fit(S) # fit to target matrix S
V = net()
print(kl_div(V, S)) # KL divergence to S
```
A more detailed version can be found [here](examples/librosa_example.py).
See our [documentation](https://pytorch-nmf.readthedocs.io/en/latest/) to find out more usage of this package.![](examples/librosa_example.png)
## Compare to sklearn
The barchart shows the time cost per iteration with different
beta-divergence. It shows that pytorch-based NMF has a much more constant process time across
different beta values, which can take advantage when beta is not 0, 1, or 2.
This is because our implementation use the same computational graph regardless which beta-divergence are we minimizing.
It runs even faster when computation is done on GPU. The test is conducted on a
Acer E5 laptop with i5-7200U CPU and GTX 950M GPU.![](examples/performance.png)
## Installation
```
pip install torchnmf
```## Requirements
* PyTorch
* tqdm## Tips
* If you notice significant slow down when operating on CPU, please flush denormal numbers by `
torch.set_flush_denormal(True)`.## TODO
- [x] Support sparse matrix target (only on `NMF` module).
- [x] Regularization.
- [ ] NNDSVD initialization.
- [x] 2/3-D deconvolutional module.
- [x] PLCA.
- [x] Documentation.
- [ ] ipynb examples.
- [x] Refactor PLCA module.