Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yoyololicon/torchcomp

Differentiable dynamic range controller in PyTorch.
https://github.com/yoyololicon/torchcomp

audio-effects compressor ddsp limiter

Last synced: about 1 month ago
JSON representation

Differentiable dynamic range controller in PyTorch.

Awesome Lists containing this project

README

        

# TorchComp

Differentiable dynamic range controller in PyTorch.

## Installation

```bash
pip install torchcomp
```

## Compressor/Expander gain function

This function calculates the gain reduction $g[n]$ for a compressor/expander.
It takes the RMS of the input signal $x[n]$ and the compressor/expander parameters as input.
The function returns the gain $g[n]$ in linear scale.
To use it as a regular compressor/expander, multiply the result $g[n]$ with the signal $x[n]$.

### Function signature

```python
def compexp_gain(
x_rms: torch.Tensor,
comp_thresh: Union[torch.Tensor, float],
comp_ratio: Union[torch.Tensor, float],
exp_thresh: Union[torch.Tensor, float],
exp_ratio: Union[torch.Tensor, float],
at: Union[torch.Tensor, float],
rt: Union[torch.Tensor, float],
) -> torch.Tensor:
"""Compressor-Expander gain function.

Args:
x_rms (torch.Tensor): Input signal RMS.
comp_thresh (torch.Tensor): Compressor threshold in dB.
comp_ratio (torch.Tensor): Compressor ratio.
exp_thresh (torch.Tensor): Expander threshold in dB.
exp_ratio (torch.Tensor): Expander ratio.
at (torch.Tensor): Attack time.
rt (torch.Tensor): Release time.

Shape:
- x_rms: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
- comp_thresh: :math:`(B,)` or a scalar.
- comp_ratio: :math:`(B,)` or a scalar.
- exp_thresh: :math:`(B,)` or a scalar.
- exp_ratio: :math:`(B,)` or a scalar.
- at: :math:`(B,)` or a scalar.
- rt: :math:`(B,)` or a scalar.

"""
```

__Note__:
`x_rms` should be non-negative.
You can calculate it using $\sqrt{x^2[n]}$ and smooth it with `avg`.

### Equations

$$
x_{\rm log}[n] = 20 \log_{10} x_{\rm rms}[n]
$$

$$
g_{\rm log}[n] = \min\left(0, \left(1 - \frac{1}{CR}\right)\left(CT - x_{\rm log}[n]\right), \left(1 - \frac{1}{ER}\right)\left(ET - x_{\rm log}[n]\right)\right)
$$

$$
g[n] = 10^{g_{\rm log}[n] / 20}
$$

$$
\hat{g}[n] = \begin{rcases} \begin{dcases}
\alpha_{\rm at} g[n] + (1 - \alpha_{\rm at}) \hat{g}[n-1] & \text{if } g[n] < \hat{g}[n-1] \\
\alpha_{\rm rt} g[n] + (1 - \alpha_{\rm rt}) \hat{g}[n-1] & \text{otherwise}
\end{dcases}\end{rcases}
$$

### Block diagram

```mermaid
graph TB
input((x))
output((g))
amp2db[amp2db]
db2amp[db2amp]
min[Min]
delay[z^-1]
zero( 0 )

input --> amp2db --> neg["*(-1)"] --> plusCT["+CT"] & plusET["+ET"]
plusCT --> multCS["*(1 - 1/CR)"]
plusET --> multES["*(1 - 1/ER)"]
zero & multCS & multES --> min --> db2amp

db2amp & delay --> ifelse{<}
output --> delay --> multATT["*(1 - AT)"] & multRTT["*(1 - RT)"]

subgraph Compressor
ifelse -->|yes| multAT["*AT"]
subgraph Attack
multAT & multATT --> plus1(("+"))
end

ifelse -->|no| multRT["*RT"]
subgraph Release
multRT & multRTT --> plus2(("+"))
end
end

plus1 & plus2 --> output
```

## Limiter gain function

This function calculates the gain reduction $g[n]$ for a limiter.
To use it as a regular limiter, multiply the result $g[n]$ with the input signal $x[n]$.

### Function signature

```python
def limiter_gain(
x: torch.Tensor,
threshold: torch.Tensor,
at: torch.Tensor,
rt: torch.Tensor,
) -> torch.Tensor:
"""Limiter gain function.
This implementation use the same attack and release time for level detection and gain smoothing.

Args:
x (torch.Tensor): Input signal.
threshold (torch.Tensor): Limiter threshold in dB.
at (torch.Tensor): Attack time.
rt (torch.Tensor): Release time.

Shape:
- x: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
- threshold: :math:`(B,)` or a scalar.
- at: :math:`(B,)` or a scalar.
- rt: :math:`(B,)` or a scalar.

"""
```

### Equations

$$
x_{\rm peak}[n] = \begin{rcases} \begin{dcases}
\alpha_{\rm at} |x[n]| + (1 - \alpha_{\rm at}) x_{\rm peak}[n-1] & \text{if } |x[n]| > x_{\rm peak}[n-1] \\
\alpha_{\rm rt} |x[n]| + (1 - \alpha_{\rm rt}) x_{\rm peak}[n-1] & \text{otherwise}
\end{dcases}\end{rcases}
$$

$$
g[n] = \min(1, \frac{10^\frac{T}{20}}{x_{\rm peak}[n]})
$$

$$
\hat{g}[n] = \begin{rcases} \begin{dcases}
\alpha_{\rm at} g[n] + (1 - \alpha_{\rm at}) \hat{g}[n-1] & \text{if } g[n] < \hat{g}[n-1] \\
\alpha_{\rm rt} g[n] + (1 - \alpha_{\rm rt}) \hat{g}[n-1] & \text{otherwise}
\end{dcases}\end{rcases}
$$

### Block diagram

```mermaid
graph TB
input((x))
output((g))
peak((x_peak))
abs[abs]
delay[z^-1]
zero( 0 )

ifelse1{>}
ifelse2{<}

input --> abs --> ifelse1

subgraph Peak detector
ifelse1 -->|yes| multAT["*AT"]
subgraph at1 [Attack]
multAT & multATT --> plus1(("+"))
end

ifelse1 -->|no| multRT["*RT"]
subgraph rt1 [Release]
multRT & multRTT --> plus2(("+"))
end
end

plus1 & plus2 --> peak
peak --> delay --> multATT["*(1 - AT)"] & multRTT["*(1 - RT)"] & ifelse1

peak --> amp2db[amp2db] --> neg["*(-1)"] --> plusT["+T"]
zero & plusT --> min[Min] --> db2amp[db2amp] --> ifelse2{<}

subgraph gain smoothing
ifelse2 -->|yes| multAT2["*AT"]
subgraph at2 [Attack]
multAT2 & multATT2 --> plus3(("+"))
end

ifelse2 -->|no| multRT2["*RT"]
subgraph rt2 [Release]
multRT2 & multRTT2 --> plus4(("+"))
end
end

output --> delay2[z^-1] --> multATT2["*(1 - AT)"] & multRTT2["*(1 - RT)"] & ifelse2

plus3 & plus4 --> output
```

## Average filter

### Function signature

```python
def avg(rms: torch.Tensor, avg_coef: Union[torch.Tensor, float]):
"""Compute the running average of a signal.

Args:
rms (torch.Tensor): Input signal.
avg_coef (torch.Tensor): Coefficient for the average RMS.

Shape:
- rms: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
- avg_coef: :math:`(B,)` or a scalar.

"""
```

### Equations

```math
\hat{x}_{\rm rms}[n] = \alpha_{\rm avg} x_{\rm rms}[n] + (1 - \alpha_{\rm avg}) \hat{x}_{\rm rms}[n-1]
```

## TODO

- [x] CUDA acceleration in Numba
- [ ] PyTorch CPP extension
- [ ] Native CUDA extension
- [x] Forward mode autograd
- [ ] Examples

## Citation

If you find this repository useful in your research, please cite our work with the following BibTex entry:

```bibtex
@inproceedings{ycy2024diffapf,
title={Differentiable All-pole Filters for Time-varying Audio Systems},
author={Chin-Yun Yu and Christopher Mitcheltree and Alistair Carson and Stefan Bilbao and Joshua D. Reiss and György Fazekas},
booktitle={International Conference on Digital Audio Effects (DAFx)},
year={2024},
pages={345--352},
}
```