Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ypeleg/nfnets-keras

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping
https://github.com/ypeleg/nfnets-keras

Last synced: 25 days ago
JSON representation

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Awesome Lists containing this project

README

        

# Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Paper: https://arxiv.org/abs/2102.06171.pdf

Original code: https://github.com/deepmind/deepmind-research/tree/master/nfnets

Do star this repository if it helps your work!

> Note: Huge Credit to [this comment](https://github.com/vballoli/nfnets-pytorch) for the pytorch implementation this repository is based on.
> Note: See [this comment](https://github.com/vballoli/nfnets-pytorch/issues/1#issuecomment-778853439) for a generic implementation for any optimizer as a temporary reference for anyone who needs it.

# Installation

Install from PyPi:

`pip3 install nfnets-keras`

or install the latest code using:

`pip3 install git+https://github.com/ypeleg/nfnets-keras`
# Usage
## NFNetF Model

Use any of the `NFNetF` models like any other keras Model!

```python

from nfnets_keras import NFNetF3

model = NFNetF3(include_top = True, num_classes = 10)
model.compile('adam', 'categorical_crossentropy')
model.fit(X, y)

```

## WSConv2D
Use `WSConv2D` like any other `keras.layer`.

```python

from nfnets_keras import WSConv2D

conv = Conv2D(16, 3)(l)
w_conv = WSConv2D(16, 3)(conv)
```

## SGD_AGC - Adaptive Gradient Clipping

Similarly, use `SGD_AGC` like `keras.optimizer.SGD`
```python

from nfnets_keras import SGD_AGC

model.compile( SGD_AGC(lr=1e-3), loss='categorical_crossentropy' )
```

# TODO
- [x] WSConv2D
- [x] SGD - Adaptive Gradient Clipping
- [x] Function to automatically replace Convolutions in any module with WSConv2d
- [x] Documentation
- [x] NFNets
- [ ] NF-ResNets

# Credit for the original pytroch implementation
```
https://github.com/vballoli/nfnets-pytorch
```

# Cite Original Work

To cite the original paper, use:
```
@article{brock2021high,
author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
title={High-Performance Large-Scale Image Recognition Without Normalization},
journal={arXiv preprint arXiv:},
year={2021}
}
```