Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yssefunc/sport_analytics
Sports betting analytics
https://github.com/yssefunc/sport_analytics
Last synced: 4 months ago
JSON representation
Sports betting analytics
- Host: GitHub
- URL: https://github.com/yssefunc/sport_analytics
- Owner: yssefunc
- Created: 2020-10-28T14:19:03.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2021-01-25T20:28:27.000Z (about 4 years ago)
- Last Synced: 2024-08-01T16:50:36.093Z (7 months ago)
- Language: Jupyter Notebook
- Size: 1.66 MB
- Stars: 11
- Watchers: 2
- Forks: 7
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Sport Analytics
Simple betting analytics with Python. It has two parts which are data-preprocessing(code/preprocess.ipynb) and exploratory data analysis(code/eda.ipynb).Article - 1: https://medium.com/analytics-vidhya/sports-analytics-in-python-part-1-12e4907da227
Article - 2: https://medium.com/analytics-vidhya/exploratory-data-analysis-in-sports-analytics-part-2-5ba6aa50cd5# Bet Options
The list below contains the most popular type of bets on football.
| 1 |2 |3|4|5|6|7|8|
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|0.5_under_half |0.5_above_half|mutual_goal|MS_2_under_2_5 |MS_1_above_3_5|MS_0_above_4_5|away_goal_concede|win_half_full|
|1.5_under_half |1.5_above_half|MS_1_under_1_5| MS_0_under_2_5|MS_2_above_3_5|win|sum_concede|win_half_full_home|
|2.5_under_half |2.5_above_half|MS_2_under_1_5|MS_1_above_2_5|MS_0_above_3_5|draw|win_half|win_half_full_away|
|0.5_under_final|0.5_above_final|MS_0_under_1_5|MS_2_above_2_5|MS_1_under_4_5|lose|draw_half|-|
|1.5_under_final|1.5_above_final|MS_1_above_1_5|MS_0_above_2_5|MS_2_under_4_5|home_goal|lose_half|-|
|2.5_under_final| 2.5_above_final|MS_2_above_1_5|MS_1_under_3_5|MS_0_under_4_5| away_goal|one_zero|-|
|3.5_under_final|3.5_above_final|MS_0_above_1_5|MS_2_under_3_5|MS_1_above_4_5|sum_goal|one_two|-|
|4.5_under_final|4.5_above_final|MS_1_under_2_5|MS_0_under_3_5|MS_2_above_4_5|home_goal_concede|zero_two|-|# Installation
Use the package manager pip to install foobar.
```
pip install ipywidgets
pip install nbextensions
pip install plotly
```
![]()
# Usage
When you run the code, you will see the sample dashboard like this.
