Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yu-changqian/TorchSeg

Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.
https://github.com/yu-changqian/TorchSeg

Last synced: about 1 month ago
JSON representation

Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

Awesome Lists containing this project

README

        

# TorchSeg
This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch.

![demo image](demo/cityscapes_demo_img.png)

## Highlights
- **Modular Design:** easily construct customized semantic segmentation models by combining different components.
- **Distributed Training:** **>60%** faster than the multi-thread parallel method([nn.DataParallel](https://pytorch.org/docs/stable/nn.html#dataparallel)), we use the multi-processing parallel method.
- **Multi-GPU training and inference:** support different manners of inference.
- Provides pre-trained models and implement different semantic segmentation models.

## Prerequisites
- PyTorch 1.0
- `pip3 install torch torchvision`
- Easydict
- `pip3 install easydict`
- [Apex](https://nvidia.github.io/apex/index.html)
- Ninja
- `sudo apt-get install ninja-build`
- tqdm
- `pip3 install tqdm`

## Updates
v0.1.1 (05/14/2019)
- Release the pre-trained models and all trained models
- Add PSANet for ADE20K
- Add support for CamVid, PASCAL-Context datasets
- Start only supporting the distributed training manner

## Model Zoo
### Pretrained Model
- [ResNet18](https://drive.google.com/file/d/1PP7mEMvqW6vBMDeNhrS6l13RU5TwI6cA/view?usp=sharing)
- [ResNet50](https://drive.google.com/file/d/1iEshXXzI3tCexo2CH92TNNOyizf2R_db/view?usp=sharing)
- [ResNet101](https://drive.google.com/file/d/1iELk6WeQ1smockQJGKU_DEG6slcqw6Mu/view?usp=sharing)

### Supported Model
- FCN
- [DFN](https://arxiv.org/abs/1804.09337)
- [BiSeNet](https://arxiv.org/abs/1808.00897)
- PSPNet
- PSANet

### Performance and Benchmarks
SS:Single Scale MSF:Multi-scale + Flip

### PASCAL VOC 2012
Methods | Backbone | TrainSet | EvalSet | Mean IoU(ss) | Mean IoU(msf) | Model
:--:|:--:|:--:|:--:|:--:|:--:|:--:
FCN-32s | R101_v1c | *train_aug* | *val* | 71.26 | - |
DFN(paper) | R101_v1c | *train_aug* | *val* | 79.67 | 80.6* |
DFN(ours) | R101_v1c | *train_aug* | *val* | 79.40 | 81.40 | [GoogleDrive](https://drive.google.com/file/d/1dK5v1oakTMP1UKMARfYf5kdBP15mEgiL/view?usp=sharing)

80.6*: this result reported in paper is further finetuned on *train* dataset.

### Cityscapes
#### Non-real-time Methods
Methods | Backbone |OHEM| TrainSet | EvalSet | Mean IoU(ss) | Mean IoU(msf) | Model
:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:
DFN(paper) | R101_v1c |✗| *train_fine* | *val* | 78.5 | 79.3 |
DFN(ours) | R101_v1c |✗| *train_fine* | *val* | 79.09 | 80.41 | [GoogleDrive](https://drive.google.com/file/d/1QGM652rWQWZx83oe2A5r48HGYtfZCRrm/view?usp=sharing)
DFN(ours) | R101_v1c |✓| *train_fine* | *val* | 79.16 | 80.53 | [GoogleDrive](https://drive.google.com/file/d/1KEX5g5dXF2cNpCh1NUe9iKvVye9g9JaD/view?usp=sharing)
BiSeNet(paper) | R101_v1c |✓| *train_fine* | *val* | - | 80.3 |
BiSeNet(ours) | R101_v1c |✓| *train_fine* | *val* | 79.09 | 80.39 | [GoogleDrive](https://drive.google.com/file/d/1yTbozInCLGiCklJ8plNTl5GgeGnW_fC0/view?usp=sharing)
BiSeNet(paper) | R18 |✓| *train_fine* | *val* | 76.21 | 78.57 |
BiSeNet(ours) | R18 |✓| *train_fine* | *val* | 76.28 | 78.00 | [GoogleDrive](https://drive.google.com/file/d/1hFF-J9qoXlbVRRUr29aWeQpL4Lwn45mU/view?usp=sharing)
BiSeNet(paper) | X39 |✓| *train_fine* | *val* | 70.1 | 72 |
BiSeNet(ours)* | X39 |✓| *train_fine* | *val* | 70.32 | 72.06 | [GoogleDrive](https://drive.google.com/file/d/1hb_qk3QLwZtQUmevZUFOHNiRHhRr0IQB/view?usp=sharing)

#### Real-time Methods
Methods | Backbone |OHEM| TrainSet | EvalSet | Mean IoU | Model
:--:|:--:|:--:|:--:|:--:|:--:|:--:
BiSeNet(paper) | R18 |✓| *train_fine* | *val* | 74.8 |
BiSeNet(ours) | R18 |✓| *train_fine* | *val* | 74.83 | [GoogleDrive](https://drive.google.com/file/d/1bLc7YC0qePcKZQTLrqsrNRnzx3cmC-1C/view?usp=sharing)
BiSeNet(paper) | X39 |✓| *train_fine* | *val* | 69 |
BiSeNet(ours)* | X39 |✓| *train_fine* | *val* | 68.51 | [GoogleDrive](https://drive.google.com/file/d/1xZEQLtJR-FSYt6ri7kfSTJ7UT9fXZtxc/view?usp=sharing)

BiSeNet(ours)*: because we didn't pre-train the Xception39 model on ImageNet in PyTorch, we train this experiment from scratch. We will release the pre-trained Xception39 model in PyTorch and the corresponding experiment.

### ADE
Methods | Backbone | TrainSet | EvalSet | Mean IoU(ss) | Accuracy(ss)| Model
:--:|:--:|:--:|:--:|:--:|:--:|:--:
PSPNet(paper) | R50_v1c | *train* | *val* | 41.68 | 80.04 |
PSPNet(ours) | R50_v1c | *train* | *val* | 41.65 | 79.74 | [GoogleDrive](https://drive.google.com/file/d/1jDj3UJCAAffmPQ4ckTOFxQdvFWxThCoy/view?usp=sharing)
PSPNet(paper) | R101_v1c | *train* | *val* | 41.96 | 80.64 |
PSPNet(ours) | R101_v1c | *train* | *val* | 42.89 | 80.55 | [GoogleDrive](https://drive.google.com/file/d/1Y6OErgb9F1qc2cJmGhW6VlUfaSdFfmfu/view?usp=sharing)
PSANet(paper) | R50_v1c | *train* | *val* | 41.92 | 80.17 |
PSANet(ours)* | R50_v1c | *train* | *val* | 41.67 | 80.09 | [GoogleDrive](https://drive.google.com/file/d/1bHD1NBgJUY1PSDgyuXH2FUXPXUB7DlLj/view?usp=sharing)
PSANet(paper) | R101_v1c | *train* | *val* | 42.75 | 80.71 |
PSANet(ours) | R101_v1c | *train* | *val* | 43.04 | 80.56 | [GoogleDrive](https://drive.google.com/file/d/1nnq0-pDNTttvSgtqiSo-QZ4HeYVaZl5T/view?usp=sharing)

PSANet(ours)*: The original PSANet in the paper constructs the
attention map with over-parameters, while we only predict the attention map with
the same size of the feature map. The performance is almost similar to the
original one.

### To Do
- [ ] offer comprehensive documents
- [ ] support more semantic segmentation models
- [ ] Deeplab v3 / Deeplab v3+
- [ ] DenseASPP
- [ ] EncNet
- [ ] OCNet

## Training
1. create the config file of dataset:`train.txt`, `val.txt`, `test.txt`
file structure:(split with `tab`)
```txt
path-of-the-image path-of-the-groundtruth
```
2. modify the `config.py` according to your requirements
3. train a network:

### Distributed Training
We use the official `torch.distributed.launch` in order to launch multi-gpu training.
This utility function from PyTorch spawns as many Python processes as the number
of GPUs we want to use, and each Python process will only use a single GPU.

For each experiment, you can just run this script:
```bash
export NGPUS=8
python -m torch.distributed.launch --nproc_per_node=$NGPUS train.py
```

## Inference
In the evaluator, we have implemented the multi-gpu inference base on the multi-process. In the inference phase, the function will spawns as many Python processes as the number of GPUs we want to use, and each Python process will handle a subset of the whole evaluation dataset on a single GPU.
1. evaluate a trained network on the validation set:
```bash
python3 eval.py
```
2. input arguments:
```bash
usage: -e epoch_idx -d device_idx [--verbose ]
[--show_image] [--save_path Pred_Save_Path]
```

## Disclaimer
This project is under active development. So things that are currently working might break in a future release. However, feel free to open issue if you get stuck anywhere.

## Citation
The following are BibTeX references. The BibTeX entry requires the url LaTeX package.

Please consider citing this project in your publications if it helps your research.
```
@misc{torchseg2019,
author = {Yu, Changqian},
title = {TorchSeg},
howpublished = {\url{https://github.com/ycszen/TorchSeg}},
year = {2019}
}
```

Please consider citing the [DFN](https://arxiv.org/abs/1804.09337) in your publications if it helps your research.

```
@inproceedings{yu2018dfn,
title={Learning a Discriminative Feature Network for Semantic Segmentation},
author={Yu, Changqian and Wang, Jingbo and Peng, Chao and Gao, Changxin and Yu, Gang and Sang, Nong},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018}
}
```

Please consider citing the [BiSeNet](https://arxiv.org/abs/1808.00897) in your publications if it helps your research.

```
@inproceedings{yu2018bisenet,
title={Bisenet: Bilateral segmentation network for real-time semantic segmentation},
author={Yu, Changqian and Wang, Jingbo and Peng, Chao and Gao, Changxin and Yu, Gang and Sang, Nong},
booktitle={European Conference on Computer Vision},
pages={334--349},
year={2018},
organization={Springer}
}
```

## Why this name, Furnace?
Furnace means the **Alchemical Furnace**. We all are the **Alchemist**, so I hope everyone can have a good alchemical furnace to practice the **Alchemy**. Hope you can be a excellent alchemist.