Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yuehhua/hopfields.jl
Modern Hopfield layer implementations in Julia
https://github.com/yuehhua/hopfields.jl
deep-learning hopfield-network hopfield-neural-network
Last synced: 11 days ago
JSON representation
Modern Hopfield layer implementations in Julia
- Host: GitHub
- URL: https://github.com/yuehhua/hopfields.jl
- Owner: yuehhua
- License: mit
- Created: 2022-06-14T12:29:02.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-07-21T06:54:56.000Z (over 2 years ago)
- Last Synced: 2024-11-23T12:05:12.865Z (29 days ago)
- Topics: deep-learning, hopfield-network, hopfield-neural-network
- Language: Julia
- Homepage:
- Size: 125 KB
- Stars: 14
- Watchers: 2
- Forks: 0
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
# Hopfields.jl
[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://yuehhua.github.io/Hopfields.jl/stable/)
[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://yuehhua.github.io/Hopfields.jl/dev/)
[![Build Status](https://github.com/yuehhua/Hopfields.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/yuehhua/Hopfields.jl/actions/workflows/CI.yml?query=branch%3Amain)
[![Coverage](https://codecov.io/gh/yuehhua/Hopfields.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/yuehhua/Hopfields.jl)Hopfields.jl provides basic implementation of Hopfield layers that can be stacked in deep learning model. It is implemented based on Flux.jl framework and is CUDA-available with CUDA.jl.
## References
This repository contains the Julia implementation of paper [Hopfield Networks is All You Need](https://arxiv.org/abs/2008.02217). For more details, you can check their [blog post](https://ml-jku.github.io/hopfield-layers/) and repository [ml-jku/hopfield-layers](https://github.com/ml-jku/hopfield-layers).