Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yueyericardo/pkbar

Keras style progressbar for Pytorch (PK Bar)
https://github.com/yueyericardo/pkbar

keras progress-bar pytorch

Last synced: about 1 month ago
JSON representation

Keras style progressbar for Pytorch (PK Bar)

Awesome Lists containing this project

README

        

# pkbar
![Test](https://github.com/yueyericardo/pkbar/workflows/Test/badge.svg) [![PyPI version](https://badge.fury.io/py/pkbar.svg)](https://badge.fury.io/py/pkbar) [![pypidownload](https://img.shields.io/pypi/dm/pkbar.svg)](https://pypistats.org/packages/pkbar)

Keras style progressbar for pytorch (PK Bar)

### 1. Show
- `pkbar.Pbar` (progress bar)
```
loading and processing dataset
10/10 [==============================] - 1.0s
```

- `pkbar.Kbar` (keras bar)
```
Epoch: 1/3
100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
Epoch: 2/3
100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
Epoch: 3/3
100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
```

### 2. Install
```
pip install pkbar
```

### 3. Usage

- `pkbar.Pbar` (progress bar)
```python
import pkbar
import time

pbar = pkbar.Pbar(name='loading and processing dataset', target=10)

for i in range(10):
time.sleep(0.1)
pbar.update(i)
```
```
loading and processing dataset
10/10 [==============================] - 1.0s
```

- `pkbar.Kbar` (keras bar) [for a concreate example](https://github.com/yueyericardo/pkbar/blob/master/tests/test.py#L16)
```python
import pkbar
import torch

# training loop
train_per_epoch = num_of_batches_per_epoch

for epoch in range(num_epochs):
################################### Initialization ########################################
kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False)
# By default, all metrics are averaged over time. If you don't want this behavior, you could either:
# 1. Set always_stateful to True, or
# 2. Set stateful_metrics=["loss", "rmse", "val_loss", "val_rmse"], Metrics in this list will be displayed as-is.
# All others will be averaged by the progbar before display.
###########################################################################################

# training
for i in range(train_per_epoch):
outputs = model(inputs)
train_loss = criterion(outputs, targets)
train_rmse = torch.sqrt(train_loss)
optimizer.zero_grad()
train_loss.backward()
optimizer.step()

############################# Update after each batch ##################################
kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)])
########################################################################################

# validation
outputs = model(inputs)
val_loss = criterion(outputs, targets)
val_rmse = torch.sqrt(val_loss)

################################ Add validation metrics ###################################
kbar.add(1, values=[("val_loss", val_loss), ("val_rmse", val_rmse)])
###########################################################################################
```
```
Epoch: 1/3
100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
Epoch: 2/3
100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
Epoch: 3/3
100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
```

### 4. Acknowledge
Keras progbar's code from [`tf.keras.utils.Progbar`](https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/utils/generic_utils.py#L313)