Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yuhao318/mwh
https://github.com/yuhao318/mwh
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/yuhao318/mwh
- Owner: yuhao318
- License: bsd-3-clause
- Created: 2021-01-09T07:38:51.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-01-12T03:08:50.000Z (almost 4 years ago)
- Last Synced: 2024-05-12T22:48:47.667Z (6 months ago)
- Language: Python
- Size: 22.5 KB
- Stars: 40
- Watchers: 3
- Forks: 7
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Mixup - [Code
README
# Mixup Without Hesitation
This repo contains demo reimplementations of the CIFAR-100 training code in PyTorch based on the following paper:Hao Yu, Huanyu Wang, Jianxin Wu. *Mixup Without Hesitation.*
## How to use
```
git clone https://github.com/yuhao318/mwh.git
cd mwh
CUDA_VISIBLE_DEVICES=0 python easy_mwh.py --sess mwh_shufflenetv2_0.5 --alpha 0.5
```## Results
The following table shows accuracy with $\alpha = 0.5$ and 100 epochs in CIFAR-100:| Model | PreAct ResNet-18 | DenseNet-161 | Wide ResNet28-10|
| :------ | ---------------: | -----------: |---------------: |
| mixup | 75.27% | 78.71% |78.86%|
| mwh | 77.00% | 79.94% |79.94%|