Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yukimasano/linear-probes

Evaluating AlexNet features at various depths
https://github.com/yukimasano/linear-probes

Last synced: 3 months ago
JSON representation

Evaluating AlexNet features at various depths

Awesome Lists containing this project

README

        

# Linear Separability Evaluation
This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different convolutional levels -- in parallel. The training lasts 36 epochs and should be finished in <1.5days.

## Usage
`$python eval_linear_probes.py`
```
usage: eval_linear_probes.py [-h] [--data DATA] [--ckpt-dir DIR] [--device d]
[--modelpath MODELPATH] [--workers N]
[--epochs N] [--batch-size N]
[--learning-rate FLOAT] [--tencrops] [--evaluate]
[--img-size IMG_SIZE] [--crop-size CROP_SIZE]
[--imagenet-path IMAGENET_PATH]

AlexNet standard linear separability tests

optional arguments:
-h, --help show this help message and exit
--data DATA Dataset Imagenet or Places (default: Imagenet)
--ckpt-dir DIR path to checkpoints (default: ./test)
--device d GPU device
--modelpath MODELPATH
path to model
--workers N number of data loading workers (default: 6)
--epochs N number of epochs (default: 36)
--batch-size N batch size (default: 192)
--learning-rate FLOAT
initial learning rate (default: 0.01)
--tencrops flag to not use tencrops (default: on)
--evaluate flag to evaluate only (default: off)
--img-size IMG_SIZE imagesize (default: 256)
--crop-size CROP_SIZE
cropsize for CNN (default: 224)
--imagenet-path IMAGENET_PATH
path to imagenet folder, where train and val are
located
```

## Settings
The settings follow the caffe code provided in [Zhang et al.](https://github.com/richzhang/colorization), with optional tencrops enabled. Average pooling can be used, but max-pooling is faster and overall more common so it is used here.

## Reference

If you use this code, please consider citing the following paper:

Yuki M. Asano, Christian Rupprecht and Andrea Vedaldi. "A critical analysis of self-supervision, or what we can learn from a single image." Proc. ICLR (2020)

```
@inproceedings{asano2020a,
title={A critical analysis of self-supervision, or what we can learn from a single image},
author={Asano, Yuki M. and Rupprecht, Christian and Vedaldi, Andrea},
booktitle={International Conference on Learning Representations (ICLR)},
year={2020},
}
```