An open API service indexing awesome lists of open source software.

https://github.com/yulunzhang/video-enhancement

A list of resources for video enhancement, including video super-resolutio, interpolation, denoising, compression artifact removal et al..
https://github.com/yulunzhang/video-enhancement

video-deblurring video-denoising video-enhancement video-interpolation video-processing video-super-resolution

Last synced: 7 months ago
JSON representation

A list of resources for video enhancement, including video super-resolutio, interpolation, denoising, compression artifact removal et al..

Awesome Lists containing this project

README

          

# Video-Enhancement
A list of resources for video enhancement, including video super-resolutio, interpolation, denoising, compression artifact removal et al..

By Yulun Zhang (yulun100@gmail.com), Yapeng Tian. (yapengtian@rochester.edu). If you have any suggestions, please contact us. Thanks!

## Video Interpolation
* Xiaoyu Xiang et al., Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution, CVPR, 2020. [[Paper]](https://arxiv.org/abs/2002.11616) [[Code]](https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020)

* Huaizu Jiang et al., Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation, CVPR, 2018. [[Paper]](https://arxiv.org/abs/1712.00080)

* Simon Niklaus et al., Context-aware Synthesis for Video Frame Interpolation, CVPR, 2018. [[Paper]](https://arxiv.org/abs/1803.10967)

* Simone Meyer et al., PhaseNet for Video Frame Interpolation, CVPR, 2018. [[Paper]](https://arxiv.org/abs/1804.00884)

* Tianfan Xue et al., Video Enhancement with Task-Oriented Flow, arXiv, 2017. [[Paper]](https://arxiv.org/abs/1711.09078) [[Code]](http://toflow.csail.mit.edu/)

* Simon Niklaus et al., Video Frame Interpolation via Adaptive Separable Convolution, ICCV, 2017. [[Paper]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Niklaus_Video_Frame_Interpolation_ICCV_2017_paper.pdf) [[Code]](https://github.com/sniklaus/pytorch-sepconv)

* Ziwei Liu et al., Video Frame Synthesis using Deep Voxel Flow, ICCV, 2017. [[Paper]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Liu_Video_Frame_Synthesis_ICCV_2017_paper.pdf)

## Video Super-Resolution
* Xiaoyu Xiang et al., Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution, CVPR, 2020. [[Paper]](https://arxiv.org/abs/2002.11616) [[Code]](https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020)

* Xintao Wang, Kelvin C.K. Chan, Ke Yu, Chao Dong, Chen Change Loy. EDVR: Video Restoration with Enhanced Deformable Convolutional Networks, CVPRW, 2019. [[Paper]](https://arxiv.org/pdf/1905.02716.pdf) [[Code]](https://github.com/xinntao/EDVR)

* Yapeng Tian, Yulun Zhang, Yun Fu, Chenliang Xu. TDAN: Temporally Deformable Alignment Network for Video Super-Resolution, ArXiv, 2018. [[Paper]](https://arxiv.org/pdf/1812.02898.pdf) [[Demo]](https://www.youtube.com/watch?v=eZExENE50I0) [[Code]](https://github.com/YapengTian/TDAN_VSR)

* Younghyun Jo et al., Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation, CVPR, 2018. [[Paper]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Jo_Deep_Video_Super-Resolution_CVPR_2018_paper.pdf)

* Mehdi S. M. Sajjadi et al., Frame-Recurrent Video Super-Resolution, CVPR, 2018. [[Paper]](https://arxiv.org/pdf/1801.04590.pdf)

* Xin Tao et al., Detail-Revealing Deep Video Super-Resolution, ICCV, 2017. [[Paper]](https://arxiv.org/abs/1704.02738) [[Code]](https://github.com/jiangsutx/SPMC_VideoSR)

* Ding Liu et al., Robust Video Super-Resolution With Learned Temporal Dynamics, ICCV, 2017. [[Paper]](https://arxiv.org/abs/1704.02738)

* Renjie Liao et al., Video Super-Resolution via Deep Draft-Ensemble Learning, ICCV, 2015. [[Paper]](http://www.cse.cuhk.edu.hk/leojia/projects/DeepSR/papers/DeepSR_final.pdf) [[Code]](http://www.cse.cuhk.edu.hk/leojia/projects/DeepSR/)

## Video Denoising
* Bihan Wen et al., Joint Adaptive Sparsity and Low-Rankness on the Fly: An Online Tensor Reconstruction Scheme for Video Denoising, ICCV, 2017. [[Paper]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Wen_Joint_Adaptive_Sparsity_ICCV_2017_paper.pdf)
* Matias Tassano et al., FastDVDnet: Towards Real-Time Deep Video Denoising Without Flow Estimation, CVPR, 2020. [[Paper]](https://openaccess.thecvf.com/content_CVPR_2020/papers/Tassano_FastDVDnet_Towards_Real-Time_Deep_Video_Denoising_Without_Flow_Estimation_CVPR_2020_paper.pdf) [[Code]](https://github.com/m-tassano/fastdvdnet)

## Video Deblurring
* Seungjun Nah et al., Recurrent Neural Networks with Intra-Frame Iterations for Video Deblurring, CVPR, 2019. [[Paper]]()

* Wenqi Ren et al., Video Deblurring via Semantic Segmentation and Pixel-Wise Non-Linear Kernel, ICCV, 2017. [[Paper]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Ren_Video_Deblurring_via_ICCV_2017_paper.pdf)

* Tae Hyun Kim et al., Online Video Deblurring via Dynamic Temporal Blending Network, ICCV, 2017. [[Paper]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Kim_Online_Video_Deblurring_ICCV_2017_paper.pdf)

## Other Video Enhancement Tasks
* Ren Yang et al., Multi-Frame Quality Enhancement for Compressed Video, CVPR, 2018. [[Paper]](https://arxiv.org/abs/1803.04680)