Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yumingj/GroupDiff
https://github.com/yumingj/GroupDiff
Last synced: 5 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/yumingj/GroupDiff
- Owner: yumingj
- Created: 2024-07-14T16:22:04.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-07-14T16:34:36.000Z (7 months ago)
- Last Synced: 2024-09-28T06:02:44.499Z (4 months ago)
- Language: Python
- Size: 21.5 KB
- Stars: 6
- Watchers: 4
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-diffusion-categorized - [Code
README
GroupDiff: Diffusion-based Group Portrait Editing
## Dataset
Our dataset is developed based on NUS LV Multiple-Human Parsing Dataset v2.0. Please download the source data from the [link](https://drive.google.com/file/d/1YVBGMru0dlwB8zu1OoErOazZoc8ISSJn/view?usp=sharing).
We use [MMPose](https://github.com/open-mmlab/mmpose) to estimate the pose using the "vitpose_h" model. You can download the pose estimation results from this [link](https://drive.google.com/file/d/1_ivJ5jTv0p-gdcZ8XLvTix_ymg7KOJTL/view?usp=sharing).
After downloading the dataset, unzip the file and put them under the dataset folder with the following structure:
```
./LV-MHP-v2
├── train
├── images
├── parsing_annos
└── pose_estimation
└── shhq_dataset
├── images
├── parsing_annos
└── pose_estimation
```Based on the preprocessed data, we propose a comprehensive training data generation engine to synthesize paired data. The data generation codes can be found [here](https://github.com/yumingj/GroupDiff/blob/main/data/group_diff_data_gen.py).