Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yumingj/Text2Performer
Code for Text2Performer. Paper: Text2Performer: Text-Driven Human Video Generation
https://github.com/yumingj/Text2Performer
Last synced: 13 days ago
JSON representation
Code for Text2Performer. Paper: Text2Performer: Text-Driven Human Video Generation
- Host: GitHub
- URL: https://github.com/yumingj/Text2Performer
- Owner: yumingj
- License: other
- Created: 2023-04-17T08:33:50.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-09-29T03:43:20.000Z (over 1 year ago)
- Last Synced: 2023-11-07T22:39:10.383Z (about 1 year ago)
- Language: Python
- Homepage: https://yumingj.github.io/projects/Text2Performer.html
- Size: 1.09 MB
- Stars: 286
- Watchers: 27
- Forks: 18
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-Human-Video-Generation - Text2Performer (ICCV2023)
README
Text2Performer: Text-Driven Human Video Generation
1S-Lab, Nanyang Technological University 2Shanghai AI Laboratory[Paper](https://arxiv.org/pdf/2304.08483.pdf) | [Project Page](https://yumingj.github.io/projects/Text2Performer.html) | [Dataset](https://github.com/yumingj/Fashion-Text2Video) | [Video](https://youtu.be/YwhaJUk_qo0)
Text2Performer synthesizes human videos by taking the text descriptions as the only input.
:open_book: For more visual results, go checkout our project page
## Installation
**Clone this repo:**
```bash
git clone https://github.com/yumingj/Text2Performer.git
cd Text2Performer
```**Dependencies:**
```bash
conda env create -f env.yaml
conda activate text2performer
```## (1) Dataset Preparation
In this work, we contribute a human video dataset with rich label and text annotations named [Fashion-Text2Video](https://github.com/yumingj/Fashion-Text2Video) Dataset.
You can download our processed dataset from this [Google Drive](https://drive.google.com/drive/folders/1NFd_irnw8kgNcu5KfWhRA8RZPdBK5p1I?usp=sharing).
After downloading the dataset, unzip the file and put them under the dataset folder with the following structure:
```
./datasets
├── FashionDataset_frames_crop
├── xxxxxx
├── 000.png
├── 001.png
├── ...
├── xxxxxx
└── xxxxxx
├── train_frame_num.txt
├── val_frame_num.txt
├── test_frame_num.txt
├── moving_frames.npy
├── captions_app.json
├── caption_motion_template.json
├── action_label
├── xxxxxx.txt
├── xxxxxx.txt
├── ...
└── xxxxxx.txt
└── shhq_dataset % optional
```## (2) Sampling
### Pretrained Models
Pretrained models can be downloaded from the [Google Drive](https://drive.google.com/drive/folders/1Dgg0EaldNfyPhykHw1TYrm4qme3CqrDz?usp=sharing). Unzip the file and put them under the pretrained_models folder with the following structure:
```
pretrained_models
├── sampler_high_res.pth
├── video_trans_high_res.pth
└── vqgan_decomposed_high_res.pth
```After downloading pretrained models, you can use ```generate_long_video.ipynb``` to generate videos.
## (3) Training Text2Performer
### Stage I: Decomposed VQGAN
Train the decomposed VQGAN. If you want to skip the training of this network, you can download our pretrained model from [here](https://drive.google.com/file/d/1G59bRoOUEQA8xljRDsfyiw6g8spV3Y7_/view?usp=sharing).For better performance, we also use the data from [SHHQ dataset](https://github.com/stylegan-human/StyleGAN-Human/blob/main/docs/Dataset.md) to train this stage.
```python
python -m torch.distributed.launch --nproc_per_node=4 --master_port=29596 train_vqvae_iter_dist.py -opt ./configs/vqgan/vqgan_decompose_high_res.yml --launcher pytorch
```### Stage II: Video Transformer
Train the video transformer. If you want to skip the training of this network, you can download our pretrained model from [here](https://drive.google.com/file/d/1QRQlhl8z4-BQfmUvHoVrJnSpxQaKDPZH/view?usp=sharing).
```python
python -m torch.distributed.launch --nproc_per_node=4 --master_port=29596 train_dist.py -opt ./configs/video_transformer/video_trans_high_res.yml --launcher pytorch
```### Stage III: Appearance Transformer
Train the appearance transformer. If you want to skip the training of this network, you can download our pretrained model from [here](https://drive.google.com/file/d/19nYQT511XsBzq1sMUc2MmfpDKT7HVi8Z/view?usp=sharing).
```python
python train_sampler.py -opt ./configs/sampler/sampler_high_res.yml
```## Citation
If you find this work useful for your research, please consider citing our paper:
```bibtex
@inproceedings{jiang2023text2performer,
title={Text2Performer: Text-Driven Human Video Generation},
author={Jiang, Yuming and Yang, Shuai and Koh, Tong Liang and Wu, Wayne and Loy, Chen Change and Liu, Ziwei},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
year={2023}
}
```## :newspaper_roll: License
Distributed under the S-Lab License. See `LICENSE` for more information.
![visitor badge](https://visitor-badge.glitch.me/badge?page_id=yumingj/Text2Performer&left_color=red&right_color=green&left_text=HelloVisitors)