Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yun-liu/HAT-Net

Vision Transformers with Hierarchical Attention
https://github.com/yun-liu/HAT-Net

Last synced: 3 months ago
JSON representation

Vision Transformers with Hierarchical Attention

Awesome Lists containing this project

README

        

## [Vision Transformers with Hierarchical Attention](https://arxiv.org/abs/2106.03180)

### This work is first titled ["Transformer in Convolutional Neural Networks"](https://arxiv.org/abs/2106.03180v2).

### Installation

This repository exactly follows the code and the training settings of [PVT](https://github.com/whai362/PVT).

### Image classification on the ImageNet-1K dataset

| Methods | Size | #Params | #FLOPs | Acc@1 | Pretrained Models |
|-----------------|:---------:|:-------:|:------:|:-----:|:-------------------:|
| HAT-Net-Tiny | 224 x 224 | 12.7M | 2.0G | 79.8 | [Google](https://drive.google.com/file/d/1iuhOCEMhEqJlCJKk--Qk1w6TcxP_Plgf/view?usp=sharing) / [Github](https://github.com/yun-liu/HAT-Net/releases/download/v2.0/HAT-Net_Tiny.pth) |
| HAT-Net-Small | 224 x 224 | 25.7M | 4.3G | 82.6 | [Google](https://drive.google.com/file/d/1lfVT_nCndVAPikAivigl72Ne5XKjfkCp/view?usp=sharing) / [Github](https://github.com/yun-liu/HAT-Net/releases/download/v2.0/HAT-Net_Small.pth) |
| HAT-Net-Medium | 224 x 224 | 42.9M | 8.3G | 84.0 | [Google](https://drive.google.com/file/d/1fWITg1Cfm0qDaYw7xhfF8pXdbhK5ctHY/view?usp=sharing) / [Github](https://github.com/yun-liu/HAT-Net/releases/download/v2.0/HAT-Net_Medium.pth) |
| HAT-Net-Large | 224 x 224 | 63.1M | 11.5G | 84.2 | [Google](https://drive.google.com/file/d/1MPNd86S_BvtPDrH_h39vjjvN12opsMki/view?usp=sharing) / [Github](https://github.com/yun-liu/HAT-Net/releases/download/v2.0/HAT-Net_Large.pth) |

### Citation

If you are using the code/models provided here in a publication, please consider citing:

@article{liu2024vision,
title={Vision Transformers with Hierarchical Attention},
author={Liu, Yun and Wu, Yu-Huan and Sun, Guolei and Zhang, Le and Chhatkuli, Ajad and Van Gool, Luc},
journal={Machine Intelligence Research},
volume={21},
pages={670--683},
year={2024},
publisher={Springer}
}

@article{liu2021transformer,
title={Transformer in Convolutional Neural Networks},
author={Liu, Yun and Sun, Guolei and Qiu, Yu and Zhang, Le and Chhatkuli, Ajad and Van Gool, Luc},
journal={arXiv preprint arXiv:2106.03180},
year={2021}
}