https://github.com/yuneg11/interpretability-metrics
Interpretability Metrics
https://github.com/yuneg11/interpretability-metrics
captum degradation interpretability metrics pytorch
Last synced: about 2 months ago
JSON representation
Interpretability Metrics
- Host: GitHub
- URL: https://github.com/yuneg11/interpretability-metrics
- Owner: yuneg11
- License: mit
- Created: 2020-08-03T07:15:18.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2022-01-14T19:49:41.000Z (over 3 years ago)
- Last Synced: 2025-02-15T02:20:09.542Z (4 months ago)
- Topics: captum, degradation, interpretability, metrics, pytorch
- Language: Python
- Homepage:
- Size: 25.4 KB
- Stars: 0
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: Readme.md
- License: LICENSE
Awesome Lists containing this project
README
# Interpretability Metrics
## Setup
1. Put ImageNet validation dataset under "data/imagenet/val" folder
2. Install libraries
```bash
# For PIP
pip install -r requirements.txt# For Conda
conda install --file requirements.txt -y
```## Run
### Degradation
```bash
# Evaluation Example
python3 scripts/degradation.py Saliency GradCam -m resnet50 -s results/ -d cuda:1# Draw Graph Example
python3 scripts/graph.py -s results -o ./result.png
```#### Supported Methods
1. Captum
- Saliency
- GuidedBackprop
- Deconvolution
- Occlusion
- LayerGradCam
- GuidedGradCam
- IntegratedGradients2. Custom Captum
- OnOffCam
- GuidedOnOffCam#### Supported Models
- AlexNet
- VGG16
- ResNet18
- ResNet50
- GoogLeNet