Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/yunjey/pytorch-tutorial

PyTorch Tutorial for Deep Learning Researchers
https://github.com/yunjey/pytorch-tutorial

deep-learning neural-networks pytorch pytorch-tutorial

Last synced: 3 days ago
JSON representation

PyTorch Tutorial for Deep Learning Researchers

Awesome Lists containing this project

README

        

--------------------------------------------------------------------------------

This repository provides tutorial code for deep learning researchers to learn [PyTorch](https://github.com/pytorch/pytorch). In the tutorial, most of the models were implemented with less than 30 lines of code. Before starting this tutorial, it is recommended to finish [Official Pytorch Tutorial](http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html).


## Table of Contents

#### 1. Basics
* [PyTorch Basics](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/01-basics/pytorch_basics/main.py)
* [Linear Regression](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/01-basics/linear_regression/main.py#L22-L23)
* [Logistic Regression](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/01-basics/logistic_regression/main.py#L33-L34)
* [Feedforward Neural Network](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/01-basics/feedforward_neural_network/main.py#L37-L49)

#### 2. Intermediate
* [Convolutional Neural Network](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/02-intermediate/convolutional_neural_network/main.py#L35-L56)
* [Deep Residual Network](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/02-intermediate/deep_residual_network/main.py#L76-L113)
* [Recurrent Neural Network](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/02-intermediate/recurrent_neural_network/main.py#L39-L58)
* [Bidirectional Recurrent Neural Network](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/02-intermediate/bidirectional_recurrent_neural_network/main.py#L39-L58)
* [Language Model (RNN-LM)](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/02-intermediate/language_model/main.py#L30-L50)

#### 3. Advanced
* [Generative Adversarial Networks](https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/03-advanced/generative_adversarial_network/main.py#L41-L57)
* [Variational Auto-Encoder](https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/03-advanced/variational_autoencoder/main.py#L38-L65)
* [Neural Style Transfer](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/neural_style_transfer)
* [Image Captioning (CNN-RNN)](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning)

#### 4. Utilities
* [TensorBoard in PyTorch](https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/04-utils/tensorboard)


## Getting Started
```bash
$ git clone https://github.com/yunjey/pytorch-tutorial.git
$ cd pytorch-tutorial/tutorials/PATH_TO_PROJECT
$ python main.py
```


## Dependencies
* [Python 2.7 or 3.5+](https://www.continuum.io/downloads)
* [PyTorch 0.4.0+](http://pytorch.org/)