Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yusugomori/deeplearning-tf2
Deep learning model zoo with TensorFlow 2.X (& Keras)
https://github.com/yusugomori/deeplearning-tf2
deep-learning keras tensorflow tensorflow2
Last synced: 2 months ago
JSON representation
Deep learning model zoo with TensorFlow 2.X (& Keras)
- Host: GitHub
- URL: https://github.com/yusugomori/deeplearning-tf2
- Owner: yusugomori
- Created: 2019-02-07T03:02:08.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2020-12-10T06:33:21.000Z (about 4 years ago)
- Last Synced: 2024-10-27T17:26:04.788Z (3 months ago)
- Topics: deep-learning, keras, tensorflow, tensorflow2
- Language: Python
- Homepage:
- Size: 57.6 KB
- Stars: 133
- Watchers: 13
- Forks: 27
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-tensorflow-2 - Deep Learning with TensorFlow 2.X (& Keras)
- Awesome-Tensorflow2 - yusugomori/deeplearning-tf2
README
# Deep Learning with TensorFlow 2.X
Implementations of neural network models with tf (>=2.0)
See also implementations with PyTorch 1.0 [here](https://github.com/yusugomori/deeplearning-pytorch).
## Requirements
* TensorFlow >= 2.0
```shell
$ pip install tensorflow
```## Models
* Logistic Regression
* MLP
* LeNet
* ResNet (ResNet34, ResNet50)
* DenseNet (DenseNet121)
* Encoder-Decoder (LSTM)
* EncoderDecoder (Attention)
* Transformer
* Deep Q-Network
* Variational Autoencoder
* Generative Adversarial Network```
models/
├── densenet121_cifar10_beginner.py
├── dqn_cartpole.py
├── encoder_decoder_attention.py
├── encoder_decoder_lstm.py
├── gan_fashion_mnist.py
├── lenet_mnist.py
├── lenet_mnist_beginner.py
├── logistic_regression_mnist.py
├── logistic_regression_mnist_beginner.py
├── mlp_mnist.py
├── mlp_mnist_beginner.py
├── resnet34_fashion_mnist.py
├── resnet34_fashion_mnist_beginner.py
├── resnet50_fashion_mnist.py
├── resnet50_fashion_mnist_beginner.py
├── transformer.py
├── vae_fashion_mnist.py
│
└── layers/
├── Attention.py
├── DotProductAttention.py
├── LayerNormalization.py
├── MultiHeadAttention.py
├── PositionalEncoding.py
└── ScaledDotProductAttention.py
```*_beginner.py is the file using only Keras.