Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yyliu01/ps-mt
[CVPR'22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation
https://github.com/yyliu01/ps-mt
cvpr2022 semantic-segmentation semi-supervised-learning semi-supervised-segmentation
Last synced: 3 months ago
JSON representation
[CVPR'22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation
- Host: GitHub
- URL: https://github.com/yyliu01/ps-mt
- Owner: yyliu01
- License: mit
- Created: 2022-03-25T02:16:11.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2023-06-27T01:45:36.000Z (over 1 year ago)
- Last Synced: 2024-08-03T01:11:51.852Z (6 months ago)
- Topics: cvpr2022, semantic-segmentation, semi-supervised-learning, semi-supervised-segmentation
- Language: Python
- Homepage: https://arxiv.org/pdf/2111.12903.pdf
- Size: 1.08 MB
- Stars: 182
- Watchers: 5
- Forks: 16
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- Awesome-Semi-Supervised-Semantic-Segmentation - Code - mt)|[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Liu_Perturbed_and_Strict_Mean_Teachers_for_Semi-Supervised_Semantic_Segmentation_CVPR_2022_paper.pdf)| (2022)
README
# PS-MT
> **[CVPR'22]** [Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation](https://arxiv.org/abs/2111.12903)
>
> by Yuyuan Liu, [Yu Tian](https://yutianyt.com/), Yuanhong Chen, [Fengbei Liu](https://fbladl.github.io/), [Vasileios Belagiannis](https://campar.in.tum.de/Main/VasileiosBelagiannis) and [Gustavo Carneiro](https://cs.adelaide.edu.au/~carneiro/)
>
> Computer Vision and Pattern Recognition Conference (CVPR), 2022![image](https://user-images.githubusercontent.com/102338056/167279043-362e1405-db45-4355-b92b-0993312fe461.png)
### Installation
Please install the dependencies and dataset based on this [***installation***](./docs/installation.md) document.### Getting start
Please follow this [***instruction***](./docs/before_start.md) document to reproduce our results.## Update
* blender setting results in VOC12 dataset (under deeplabv3+ with resnet101)
| Approach | 1/16 (662)| 1/8 (1323)| 1/4 (2646)| 1/2 (5291)|
|:--------: |:-----: |:-----: |:-----: |:-----: |
| PS-MT [(wandb_log)](https://wandb.ai/pyedog1976/blender-exps?workspace=user-pyedog1976) | 78.79 | 80.29 | 80.66 | 80.87 |
* please note that, we update the blender splits list end with an extra 0 (e.g., 6620 for 662 labels) in [the original directory](https://github.com/yyliu01/PS-MT/tree/main/VocCode/DataLoader/voc_splits).
* you can find the related launching scripts in [here](https://github.com/yyliu01/PS-MT/blob/main/scripts/train_voc_blender.sh).
* **In case you are using blender experiments (which are built on top of the high-quality labels), please compare with the results in this table**.
## Results
### Pascal VOC12 dataset
1. augmented set| Backbone | 1/16 (662)| 1/8 (1323)| 1/4 (2646)| 1/2 (5291)|
|:--------: |:-----: |:-----: |:-----: |:-----: |
| 50 | 72.83 | 75.70 | 76.43 | 77.88 |
| 101 | 75.50 | 78.20 | 78.72 | 79.76 |
2. high quality set (based on res101)| 1/16 (92)| 1/8 (183)| 1/4 (366)| 1/2 (732)| full (1464)|
|:-----: |:-----: |:-----: |:-----: |:-----: |
| 65.80 | 69.58 | 76.57 | 78.42 |80.01|### CityScape dataset
1. following the setting of [CAC](https://arxiv.org/pdf/2106.14133.pdf) (720x720, CE supervised loss)
| Backbone | slid. eval| 1/8 (372)| 1/4 (744)| 1/2 (1488)|
|:--------: |:-----: |:-----: |:-----: |:-----: |
| 50 | ✗ |74.37 | 75.15 | 76.02 |
| 50 | ✓ |75.76 | 76.92 | 77.64 |
| 101 | ✓ |76.89 | 77.60 | 79.09 |
2. following the setting of [CPS](https://arxiv.org/pdf/2106.01226.pdf) (800x800, OHEM supervised loss)
| Backbone | slid. eval| 1/8 (372)| 1/4 (744)| 1/2 (1488)|
|:--------: |:-----: |:-----: |:-----: |:-----: |
| 50 | ✓ |77.12 | 78.38 | 79.22 |## Training details
Some examples of training details, including:
1) VOC12 dataset in this [wandb](https://wandb.ai/pyedog1976/PS-MT(VOC12)?workspace=user-pyedog1976) link.
2) Cityscapes dataset in this [wandb](https://wandb.ai/pyedog1976/PS-MT(City)?workspace=user-pyedog1976) link **(w/ 1-teacher inference)**.In details, after clicking the run (e.g., [1323_voc_rand1](https://wandb.ai/pyedog1976/PS-MT(VOC12)/runs/177s76t6?workspace=user-pyedog1976)), you can checkout:
1)
overall information (e.g., training command line, hardware information and training time).
2)training details (e.g., loss curves, validation results and visualization)
3)output logs (well, sometimes might crash ...)
## Acknowledgement & Citation
The code is highly based on the [CCT](https://github.com/yassouali/CCT). Many thanks for their great work.Please consider citing this project in your publications if it helps your research.
```bibtex
@article{liu2021perturbed,
title={Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation},
author={Liu, Yuyuan and Tian, Yu and Chen, Yuanhong and Liu, Fengbei and Belagiannis, Vasileios and Carneiro, Gustavo},
journal={arXiv preprint arXiv:2111.12903},
year={2021}
}```
#### TODO
- [x] Code of deeplabv3+ for voc12
- [x] Code of deeplabv3+ for cityscapes