Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/yzwxx/vae-celebA
Variational auto-encoder trained on celebA . All rights reserved.
https://github.com/yzwxx/vae-celebA
celeba-dataset tensorflow tensorlayer variational-autoencoder vggl16
Last synced: 6 days ago
JSON representation
Variational auto-encoder trained on celebA . All rights reserved.
- Host: GitHub
- URL: https://github.com/yzwxx/vae-celebA
- Owner: yzwxx
- Created: 2017-08-14T12:39:43.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2017-12-14T14:34:14.000Z (almost 7 years ago)
- Last Synced: 2024-08-02T20:44:33.318Z (3 months ago)
- Topics: celeba-dataset, tensorflow, tensorlayer, variational-autoencoder, vggl16
- Language: Python
- Size: 2.71 MB
- Stars: 181
- Watchers: 11
- Forks: 44
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-tensorlayer - Variational Autoencoder
README
# vae-celebA
Hereby we present plain VAE and modified VAE model, both of which are trained on celebA dataset to synthesize facial images.
## Result:
### plain VAE
### DFC-VAE
input image:
reconstruction:
randomly generation:
To run the code, you are required to install Tensorflow and Tensorlayer on your machine. **[how to install Tensorlayer](https://github.com/zsdonghao/tensorlayer)**
## SOME NOTES
This is the code for the paper **[Deep Feature Consistent Variational Autoencoder](https://houxianxu.github.io/assets/project/dfcvae)**
In loss function we used a vgg loss.Check this **[how to load and use a pretrained VGG-16?](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py)** if you have trouble reading vgg_loss.py.## How to Run
Firstly, download the [celebA dataset](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) and [VGG-16 weights](http://www.cs.toronto.edu/%7Efrossard/post/vgg16/).
After installing all the third-party packages required, we can train the models by:
```python
python train_vae.py # for plain VAE
python train_dfc_vae.py # for DFC-VAE
```