https://github.com/zabir-nabil/eeg-rsenet
Motor Imagery EEG Signal Classification Using Random Subspace Ensemble Network
https://github.com/zabir-nabil/eeg-rsenet
biosignal classification eeg eeg-classification eeg-matlab eeg-neural-networks matlab-eeg-classification motor-imagery motor-imagery-eeg neural-net random-subspace-ensemble random-subspace-ensemble-network rse-net signal-classification
Last synced: 2 months ago
JSON representation
Motor Imagery EEG Signal Classification Using Random Subspace Ensemble Network
- Host: GitHub
- URL: https://github.com/zabir-nabil/eeg-rsenet
- Owner: zabir-nabil
- License: mit
- Created: 2018-08-29T15:53:16.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2023-04-30T09:19:56.000Z (over 2 years ago)
- Last Synced: 2025-04-03T02:04:38.541Z (6 months ago)
- Topics: biosignal, classification, eeg, eeg-classification, eeg-matlab, eeg-neural-networks, matlab-eeg-classification, motor-imagery, motor-imagery-eeg, neural-net, random-subspace-ensemble, random-subspace-ensemble-network, rse-net, signal-classification
- Language: Jupyter Notebook
- Homepage:
- Size: 12.8 MB
- Stars: 40
- Watchers: 1
- Forks: 13
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Motor Imagery EEG Classification Using Random Subspace Ensemble Network with Variable Length Features
*Running Matlab Scripts:* https://youtu.be/AeRMO98-URc
This is a codebase for motor imagery EEG experiments for **three** projects.
1. Matlab-based baseline for EEG classification. `(minimal matlab)`
2. Classification of motor imagery EEG signals with multi-input convolutional neural network by augmenting STFT. [[IEEE]](https://ieeexplore.ieee.org/document/8975578) [[PDF]](https://www.researchgate.net/publication/335241301_Classification_of_Motor_Imagery_EEG_Signals_with_multi-input_Convolutional_Neural_Network_by_augmenting_STFT) *Notebooks:* `(STFT_CNN_benchmark.ipynb, bci_4_tl_sub1.ipynb, bci_4_tl_sub2.ipynb)`
3. Motor Imagery EEG Classification Using Random Subspace Ensemble Network with Variable Length Features. [[Google Scholar]](https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Fd1-G4YAAAAJ&citation_for_view=Fd1-G4YAAAAJ:eQOLeE2rZwMC) [[PDF]](https://www.researchgate.net/publication/350403311_Motor_Imagery_EEG_Classification_Using_Random_Subspace_Ensemble_Network_with_Variable_Length_Features) *Notebooks:* `(result.ipynb, result_all.ipynb, result_rsenet.ipynb, result_rsenet_all.ipynb, visualization.ipynb)`