Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zarr-developers/zarr-python
An implementation of chunked, compressed, N-dimensional arrays for Python.
https://github.com/zarr-developers/zarr-python
compressed hacktoberfest ndimensional-arrays python zarr
Last synced: 10 days ago
JSON representation
An implementation of chunked, compressed, N-dimensional arrays for Python.
- Host: GitHub
- URL: https://github.com/zarr-developers/zarr-python
- Owner: zarr-developers
- License: mit
- Created: 2015-12-15T14:49:40.000Z (almost 9 years ago)
- Default Branch: main
- Last Pushed: 2024-04-22T13:48:10.000Z (7 months ago)
- Last Synced: 2024-04-22T13:52:36.344Z (7 months ago)
- Topics: compressed, hacktoberfest, ndimensional-arrays, python, zarr
- Language: Python
- Homepage: http://zarr.readthedocs.io/
- Size: 14.3 MB
- Stars: 1,336
- Watchers: 44
- Forks: 255
- Open Issues: 331
-
Metadata Files:
- Readme: README.md
- Contributing: .github/CONTRIBUTING.md
- Funding: FUNDING.yml
- License: LICENSE.txt
- Codeowners: .github/CODEOWNERS
Awesome Lists containing this project
- best-of-python - GitHub - 42% open · ⏱️ 04.06.2024): (Data Containers & Dataframes)
- awesome-scientific-computing - GitHub
- awesome-list - Zarr - An implementation of chunked, compressed, N-dimensional arrays for Python. (Data Processing / Data Representation)
- awesome-python-machine-learning-resources - GitHub - 38% open · ⏱️ 15.08.2022): (数据容器和结构)
- awesome-production-machine-learning - Zarr - developers/zarr-python.svg?style=social) - Python implementation of chunked, compressed, N-dimensional arrays designed for use in parallel computing. (Data Storage Optimisation)
README
# Zarr
## What is it?
Zarr is a Python package providing an implementation of compressed, chunked, N-dimensional arrays, designed for use in parallel computing. See the [documentation](https://zarr.readthedocs.io) for more information.
## Main Features
- [**Create**](https://zarr.readthedocs.io/en/stable/tutorial.html#creating-an-array) N-dimensional arrays with any NumPy `dtype`.
- [**Chunk arrays**](https://zarr.readthedocs.io/en/stable/tutorial.html#chunk-optimizations) along any dimension.
- [**Compress**](https://zarr.readthedocs.io/en/stable/tutorial.html#compressors) and/or filter chunks using any NumCodecs codec.
- [**Store arrays**](https://zarr.readthedocs.io/en/stable/tutorial.html#tutorial-storage) in memory, on disk, inside a zip file, on S3, etc...
- [**Read**](https://zarr.readthedocs.io/en/stable/tutorial.html#reading-and-writing-data) an array [**concurrently**](https://zarr.readthedocs.io/en/stable/tutorial.html#parallel-computing-and-synchronization) from multiple threads or processes.
- Write to an array concurrently from multiple threads or processes.
- Organize arrays into hierarchies via [**groups**](https://zarr.readthedocs.io/en/stable/tutorial.html#groups).## Where to get it
Zarr can be installed from PyPI using `pip`:
```bash
pip install zarr
```or via `conda`:
```bash
conda install -c conda-forge zarr
```For more details, including how to install from source, see the [installation documentation](https://zarr.readthedocs.io/en/stable/index.html#installation).