Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/zehuichen123/ddod

[ACM MM 2021] Disentangle your Dense Object Detector, Oral
https://github.com/zehuichen123/ddod

Last synced: about 1 month ago
JSON representation

[ACM MM 2021] Disentangle your Dense Object Detector, Oral

Awesome Lists containing this project

README

        

# Disentangle Your Dense Object Detector

This repo contains the supported code and configuration files to reproduce object detection results of [Disentangle Your Dense Object Detector](https://arxiv.org/abs/2107.02963). It is based on [mmdetection](https://github.com/open-mmlab/mmdetection).

## Results and Models

| Model | Backbone | Lr Schd | box mAP | AP50 | AP75 | APs | APm | APl |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |:---: |
| ATSS(IoU) | ResNet50 | 1x | 39.4 | 56.6 | 42.6 | 23.9 | 42.5 | 49.6 |
| DDOD | ResNet50 | 1x | 41.6 | 59.9 | 45.2 | 23.9 | 44.9 | 54.4 |
| DDOD-FCOS | ResNet50 | 1x | 41.6 | 59.9 | 45.3 | 24.0 | 44.6 | 54.8 |

## Usage

### Installation

Please refer to [get_started.md](https://github.com/open-mmlab/mmdetection/blob/master/docs/get_started.md) for installation and dataset preparation.

### Inference
```
# multi-gpu testing
tools/dist_test.sh coco_cfg/ddod_r50_1x.py 8 --eval bbox
```

### Training

To train a detector with pre-trained models, run:
```
# multi-gpu training
tools/dist_train.sh coco_cfg/ddod_r50_1x.py 8
```

## Citing DDOD
```
@misc{chen2021disentangle,
title={Disentangle Your Dense Object Detector},
author={Zehui Chen and Chenhongyi Yang and Qiaofei Li and Feng Zhao and Zhengjun Zha and Feng Wu},
year={2021},
eprint={2107.02963},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```