https://github.com/zeroto521/kmeans
A Python implementation of base KMEANS, SEED-KMEANS algorithm
https://github.com/zeroto521/kmeans
Last synced: about 2 months ago
JSON representation
A Python implementation of base KMEANS, SEED-KMEANS algorithm
- Host: GitHub
- URL: https://github.com/zeroto521/kmeans
- Owner: Zeroto521
- License: mit
- Created: 2019-05-12T07:21:07.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2020-06-12T02:01:45.000Z (almost 5 years ago)
- Last Synced: 2025-02-09T01:33:16.511Z (4 months ago)
- Language: Python
- Homepage:
- Size: 15.6 KB
- Stars: 1
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# KMeans
A Python implementation of base KMEANS, SEED-KMEANS algorithm.
[](https://travis-ci.com/Zeroto521/KMeans) [](https://codecov.io/gh/Zeroto521/kmeans)
## Prerequisites
- numpy
> More details for [requirements](requirements.txt) file.
## Installation
```bash
>>> git clone https://github.com/Zeroto521/KMeans.git
>>> cd KMeans
>>> python setup.py install
```## Examples
```bash
>>> from kmeans import KMeans
>>> model = KMeans() # build model
>>> labels = model.fit(data) # Guess you have `data` which the shape is `(n, m)`. `n` is sample numbers, `m` is feature numbers.
>>> labels
```> more examples can see [here](./examples).
## License
MIT License. [@Zeroto521](https://github.com/Zeroto521)
## TODO
- [ ] all kinds of distane
- [ ] write doc
- [ ] Optimized sparse matrix