Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/zfturbo/keras-mask-rcnn-for-open-images-2019-instance-segmentation
Code and pre-trained models for Instance Segmentation track in Open Images Dataset
https://github.com/zfturbo/keras-mask-rcnn-for-open-images-2019-instance-segmentation
keras mask-rcnn open-images-dataset pretrained-models
Last synced: 2 months ago
JSON representation
Code and pre-trained models for Instance Segmentation track in Open Images Dataset
- Host: GitHub
- URL: https://github.com/zfturbo/keras-mask-rcnn-for-open-images-2019-instance-segmentation
- Owner: ZFTurbo
- Created: 2019-10-25T08:05:11.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2019-10-25T16:33:05.000Z (about 5 years ago)
- Last Synced: 2024-03-20T23:10:33.453Z (10 months ago)
- Topics: keras, mask-rcnn, open-images-dataset, pretrained-models
- Language: Python
- Homepage:
- Size: 182 KB
- Stars: 57
- Watchers: 4
- Forks: 16
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Keras Mask R-CNN for Open Images Challenge 2019: Instance Segmentation
Repository contains Mask R-CNN models which were trained on Open Images Dataset during Kaggle competition:
https://www.kaggle.com/c/open-images-2019-instance-segmentation/leaderboardRepository contains the following:
* Pre-trained Mask R-CNN models (ResNet50, ResNet101 and ResNet152 backbones)
* Example code to get predictions with these models for any set of images
* Code to train model based on Keras Mask R-CNN and OID dataset## Requirements
Python 3.\*, Keras 2.\*, [keras-maskrcnn 0.2.2](https://github.com/fizyr/keras-maskrcnn), cv2, numpy, pandas
## Pretrained models
There are 3 Mask R-CNN models based on ResNet50, ResNet101 and ResNet152 for [300 classes](https://github.com/ZFTurbo/Keras-Mask-RCNN-for-Open-Images-2019-Instance-Segmentation/blob/master/data_segmentation/challenge-2019-classes-description-segmentable.csv).
| Backbone | Image Size (px) | Model | Small validation mAP | LB (Public) |
| --- | --- | --- | --- | --- |
| ResNet50 | 800 - 1024 | [521 MB](https://github.com/ZFTurbo/Keras-Mask-RCNN-for-Open-Images-2019-Instance-Segmentation/releases/download/v1.0/mask_rcnn_resnet50_oid_v1.0.h5) | 0.5745 | 0.4259 |
| ResNet101 | 800 - 1024 | [739 MB](https://github.com/ZFTurbo/Keras-Mask-RCNN-for-Open-Images-2019-Instance-Segmentation/releases/download/v1.0/mask_rcnn_resnet101_oid_v1.0.h5) | 0.5917 | 0.4345 |
| ResNet152 | 800 - 1024 | [918 MB](https://github.com/ZFTurbo/Keras-Mask-RCNN-for-Open-Images-2019-Instance-Segmentation/releases/download/v1.0/mask_rcnn_resnet152_oid_v1.0.h5) | 0.5899 | 0.4404 |* Model - can be used to resume training or can be used as pretrain for your own instance segmentation model
## Inference
Simple example can be found here: [inference_example.py](https://github.com/ZFTurbo/Keras-Mask-RCNN-for-Open-Images-2019-Instance-Segmentation/blob/master/inference_example.py)
![Example of predictions](https://github.com/ZFTurbo/Keras-Mask-RCNN-for-Open-Images-2019-Instance-Segmentation/blob/master/img/mask_rcnn_prediction_example.jpg)
## Training
For training you need to download OID dataset (~500 GB images): https://storage.googleapis.com/openimages/web/download.html
You need all images, all masks and all CSV-files related to Instance Segmentation track.Then run script (change parameters and file locations at the bottom of script):
* [training/train_maskrcnn.py](https://github.com/ZFTurbo/Keras-Mask-RCNN-for-Open-Images-2019-Instance-Segmentation/blob/master/training/train_maskrcnn.py)