Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/zfturbo/volumentations

Library for 3D augmentations
https://github.com/zfturbo/volumentations

3d 3d-augmentation augmentation transformations

Last synced: 6 days ago
JSON representation

Library for 3D augmentations

Awesome Lists containing this project

README

        

# Volumentations 3D

3D Volume data augmentation package inspired by albumentations.

Volumentations is a working project, which originated from the following Git repositories:
- Original: https://github.com/albumentations-team/albumentations
- 3D Conversion: https://github.com/ashawkey/volumentations
- Continued Development: https://github.com/ZFTurbo/volumentations

Nevertheless, if you are using this subpackage, please give credit to all authors including ashawkey, ZFTurbo, qubvel and muellerdo.

Initially inspired by [albumentations](https://github.com/albumentations-team/albumentations) library for augmentation of 2D images.

# Installation

```sh
pip install volumentations-3D
```

# Simple Example

```python
from volumentations import *

def get_augmentation(patch_size):
return Compose([
Rotate((-15, 15), (0, 0), (0, 0), p=0.5),
RandomCropFromBorders(crop_value=0.1, p=0.5),
ElasticTransform((0, 0.25), interpolation=2, p=0.1),
Resize(patch_size, interpolation=1, resize_type=0, always_apply=True, p=1.0),
Flip(0, p=0.5),
Flip(1, p=0.5),
Flip(2, p=0.5),
RandomRotate90((1, 2), p=0.5),
GaussianNoise(var_limit=(0, 5), p=0.2),
RandomGamma(gamma_limit=(80, 120), p=0.2),
], p=1.0)

aug = get_augmentation((64, 128, 128))

img = np.random.randint(0, 255, size=(128, 256, 256), dtype=np.uint8)
lbl = np.random.randint(0, 1, size=(128, 256, 256), dtype=np.uint8)

# with mask
data = {'image': img, 'mask': lbl}
aug_data = aug(**data)
img, lbl = aug_data['image'], aug_data['mask']

# without mask
data = {'image': img}
aug_data = aug(**data)
img = aug_data['image']

```

* Check working usage example in [tst_volumentations_type_1.py](tst_volumentations_type_1.py)
* Added another usage example / testing in [tst_volumentations_type_2.py](tst_volumentations_type_2.py)

# Difference from initial version

* Diverse bug fixes.
* Implemented multiple augmentations.
* Approximation enhancements to be closer to Albumentations.

# Implemented 3D augmentations

Check the [EXAMPLES](EXAMPLES.md) page for visual demonstrations
```python
CenterCrop
ColorJitter
Contiguous
CropNonEmptyMaskIfExists
Downscale
ElasticTransform
ElasticTransformPseudo2D
Flip
Float
GaussianNoise
GlassBlur
GridDistortion
GridDropout
ImageCompression
Normalize
PadIfNeeded
RandomBrightnessContrast
RandomCrop
RandomCropFromBorders
RandomDropPlane
RandomGamma
RandomResizedCrop
RandomRotate90
RandomScale
RandomScale2
RemoveEmptyBorder
Resize
ResizedCropNonEmptyMaskIfExists
Rotate
RotatePseudo2D
Transpose
```

# Speed table

Speed in seconds per one sample.

| Aug name | Cube = 64px | Cube = 96px | Cube = 128px | Cube = 224px | Cube = 256px |
|----------|-------------|-------------|--------------|--------------|--------------|
| Rotate | 0.0402 | 0.1366 | 0.3246 | 1.7546 | 2.6349 |
| RandomCropFromBorders| 0.0037 | 0.0129 | 0.0315 | 0.1634 | 0.2426 |
| ElasticTransform | 0.1588 | 0.5439 | 2.8649 | 11.8937 | 42.3886 |
| Resize (type = 0) | 0.4029 | 0.4077 | 0.4245 | 0.5545 | 0.6278 |
| Resize (type = 1) | 0.3618 | 0.3696 | 0.3871 | 0.5174 | 0.5896 |
| Flip | 0.0042 | 0.0134 | 0.0314 | 0.1649 | 0.2453 |
| RandomRotate90 | 0.0040 | 0.0140 | 0.0306 | 0.1672 | 0.2439 |
| GaussianNoise | 0.0143 | 0.0406 | 0.0956 | 0.4992 | 0.7381 |
| RandomGamma | 0.0066 | 0.0211 | 0.0505 | 0.2654 | 0.3989 |
| RandomScale | 0.0158 | 0.0518 | 0.1198 | 0.6391 | 0.9457 |

### Related repositories

* [timm_3d](https://github.com/ZFTurbo/timm_3d) - classification models in 3D for PyTorch
* [classification_models_3D](https://github.com/ZFTurbo/classification_models_3D) - 3D volumes classification models for Keras/Tensorflow
* [segmentation_models_pytorch_3d](https://github.com/ZFTurbo/segmentation_models_pytorch_3d) - 3D volumes segmentation models for PyTorch
* [segmentation_models_3D](https://github.com/ZFTurbo/segmentation_models_3D) - segmentation models in 3D for Keras/Tensorflow

# Citation

For more details, please refer to the publication: https://doi.org/10.1016/j.compbiomed.2021.105089

If you find this code useful, please cite it as:
```
@article{solovyev20223d,
title={3D convolutional neural networks for stalled brain capillary detection},
author={Solovyev, Roman and Kalinin, Alexandr A and Gabruseva, Tatiana},
journal={Computers in Biology and Medicine},
volume={141},
pages={105089},
year={2022},
publisher={Elsevier},
doi={10.1016/j.compbiomed.2021.105089}
}
```