Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/zh-plus/openlrc

Transcribe and translate voice into LRC file using Whisper and LLMs (GPT, Claude, et,al). 使用whisper和LLM(GPT,Claude等)来转录、翻译你的音频为字幕文件。
https://github.com/zh-plus/openlrc

auto-subtitle faster-whisper lyrics lyrics-generator openai-api openlrc python speech-to-text subtitle-translation transcribe voice-to-text whisper

Last synced: 8 days ago
JSON representation

Transcribe and translate voice into LRC file using Whisper and LLMs (GPT, Claude, et,al). 使用whisper和LLM(GPT,Claude等)来转录、翻译你的音频为字幕文件。

Awesome Lists containing this project

README

        

# Open-Lyrics

[![PyPI](https://img.shields.io/pypi/v/openlrc)](https://pypi.org/project/openlrc/)
[![PyPI - License](https://img.shields.io/pypi/l/openlrc)](https://pypi.org/project/openlrc/)
[![Downloads](https://static.pepy.tech/badge/openlrc)](https://pepy.tech/project/openlrc)
![GitHub Workflow Status (with event)](https://img.shields.io/github/actions/workflow/status/zh-plus/Open-Lyrics/ci.yml)

Open-Lyrics is a Python library that transcribes voice files using
[faster-whisper](https://github.com/guillaumekln/faster-whisper), and translates/polishes the resulting text
into `.lrc` files in the desired language using LLM,
e.g. [OpenAI-GPT](https://github.com/openai/openai-python), [Anthropic-Claude](https://github.com/anthropics/anthropic-sdk-python).

#### Key Features:

- Well preprocessed audio to reduce hallucination (Loudness Norm & optional Noise Suppression).
- Context-aware translation to improve translation quality.
Check [prompt](https://github.com/zh-plus/openlrc/blob/master/openlrc/prompter.py) for details.
- Check [here](#how-it-works) for an overview of the architecture.

## New 🚨

- 2024.5.7:
- Add custom endpoint (base_url) support for OpenAI & Anthropic:
```python
lrcer = LRCer(base_url_config={'openai': 'https://api.chatanywhere.tech',
'anthropic': 'https://example/api'})
```
- Generating bilingual subtitles
```python
lrcer.run('./data/test.mp3', target_lang='zh-cn', bilingual_sub=True)
```
- 2024.5.11: Add glossary into prompt, which is confirmed to improve domain specific translation.
Check [here](#glossary) for details.
- 2024.5.17: You can route model to arbitrary Chatbot SDK (either OpenAI or Anthropic) by setting `chatbot_model` to
`provider: model_name` together with base_url_config:
```python
lrcer = LRCer(chatbot_model='openai: claude-3-haiku-20240307',
base_url_config={'openai': 'https://api.g4f.icu/v1/'})
```
- 2024.6.25: Support Gemini as translation engine LLM, try using `gemini-1.5-flash`:
```python
lrcer = LRCer(chatbot_model='gemini-1.5-flash')
```
- 2024.9.10: Now openlrc depends on
a [specific commit](https://github.com/SYSTRAN/faster-whisper/commit/d57c5b40b06e59ec44240d93485a95799548af50) of
faster-whisper, which is not published on PyPI. Install it from source:
```shell
pip install "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/d57c5b40b06e59ec44240d93485a95799548af50.tar.gz"
```

## Installation ⚙️

1. Please install CUDA 11.x and [cuDNN 8 for CUDA 11](https://developer.nvidia.com/cudnn) first according
to https://opennmt.net/CTranslate2/installation.html to enable `faster-whisper`.

`faster-whisper` also needs [cuBLAS for CUDA 11](https://developer.nvidia.com/cublas) installed.

For Windows Users (click to expand)

(For Windows Users only) Windows user can Download the libraries from Purfview's repository:

Purfview's [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) provides the required NVIDIA
libraries for Windows in a [single archive](https://github.com/Purfview/whisper-standalone-win/releases/tag/libs).
Decompress the archive and place the libraries in a directory included in the `PATH`.

2. Add LLM API keys, you can either:
- Add your [OpenAI API key](https://platform.openai.com/account/api-keys) to environment variable `OPENAI_API_KEY`.
- Add your [Anthropic API key](https://console.anthropic.com/settings/keys) to environment variable
`ANTHROPIC_API_KEY`.
- Add your [Google API Key](https://aistudio.google.com/app/apikey) to environment variable `GOOGLE_API_KEY`.

3. Install latest [fast-whisper](https://github.com/guillaumekln/faster-whisper) from source:
```shell
pip install "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/d57c5b40b06e59ec44240d93485a95799548af50.tar.gz"
```

4. Install [ffmpeg](https://ffmpeg.org/download.html) and add `bin` directory
to your `PATH`.

5. This project can be installed from PyPI:

```shell
pip install openlrc
```

or install directly from GitHub:

```shell
pip install git+https://github.com/zh-plus/openlrc
```

6. Install [PyTorch](https://pytorch.org/get-started/locally/):
```shell
pip install --force-reinstall torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
```

## Usage 🐍

### GUI

> [!NOTE]
> We are migrating the GUI from streamlit to Gradio. The GUI is still under development.

```shell
openlrc gui
```

![](https://github.com/zh-plus/openlrc/blob/master/resources/streamlit_app.jpg?raw=true)

### Python code

```python
from openlrc import LRCer

if __name__ == '__main__':
lrcer = LRCer()

# Single file
lrcer.run('./data/test.mp3',
target_lang='zh-cn') # Generate translated ./data/test.lrc with default translate prompt.

# Multiple files
lrcer.run(['./data/test1.mp3', './data/test2.mp3'], target_lang='zh-cn')
# Note we run the transcription sequentially, but run the translation concurrently for each file.

# Path can contain video
lrcer.run(['./data/test_audio.mp3', './data/test_video.mp4'], target_lang='zh-cn')
# Generate translated ./data/test_audio.lrc and ./data/test_video.srt

# Use glossary to improve translation
lrcer = LRCer(glossary='./data/aoe4-glossary.yaml')

# To skip translation process
lrcer.run('./data/test.mp3', target_lang='en', skip_trans=True)

# Change asr_options or vad_options, check openlrc.defaults for details
vad_options = {"threshold": 0.1}
lrcer = LRCer(vad_options=vad_options)
lrcer.run('./data/test.mp3', target_lang='zh-cn')

# Enhance the audio using noise suppression (consume more time).
lrcer.run('./data/test.mp3', target_lang='zh-cn', noise_suppress=True)

# Change the LLM model for translation
lrcer = LRCer(chatbot_model='claude-3-sonnet-20240229')
lrcer.run('./data/test.mp3', target_lang='zh-cn')

# Clear temp folder after processing done
lrcer.run('./data/test.mp3', target_lang='zh-cn', clear_temp=True)

# Change base_url
lrcer = LRCer(base_url_config={'openai': 'https://api.g4f.icu/v1',
'anthropic': 'https://example/api'})

# Route model to arbitrary Chatbot SDK
lrcer = LRCer(chatbot_model='openai: claude-3-sonnet-20240229',
base_url_config={'openai': 'https://api.g4f.icu/v1/'})

# Bilingual subtitle
lrcer.run('./data/test.mp3', target_lang='zh-cn', bilingual_sub=True)
```

Check more details in [Documentation](https://zh-plus.github.io/openlrc/#/).

### Glossary

Add glossary to improve domain specific translation. For example `aoe4-glossary.yaml`:

```json
{
"aoe4": "帝国时代4",
"feudal": "封建时代",
"2TC": "双TC",
"English": "英格兰文明",
"scout": "侦察兵"
}
```

```python
lrcer = LRCer(glossary='./data/aoe4-glossary.yaml')
lrcer.run('./data/test.mp3', target_lang='zh-cn')
```

or directly use dictionary to add glossary:

```python
lrcer = LRCer(glossary={"aoe4": "帝国时代4", "feudal": "封建时代"})
lrcer.run('./data/test.mp3', target_lang='zh-cn')
```

## Pricing 💰

*pricing data from [OpenAI](https://openai.com/pricing)
and [Anthropic](https://docs.anthropic.com/claude/docs/models-overview#model-comparison)*

| Model Name | Pricing for 1M Tokens
(Input/Output) (USD) | Cost for 1 Hour Audio
(USD) |
|------------------------------|-------------------------------------------------|----------------------------------|
| `gpt-3.5-turbo-0125` | 0.5, 1.5 | 0.01 |
| `gpt-3.5-turbo` | 0.5, 1.5 | 0.01 |
| `gpt-4-0125-preview` | 10, 30 | 0.5 |
| `gpt-4-turbo-preview` | 10, 30 | 0.5 |
| `gpt-4o` | 5, 15 | 0.25 |
| `claude-3-haiku-20240307` | 0.25, 1.25 | 0.015 |
| `claude-3-sonnet-20240229` | 3, 15 | 0.2 |
| `claude-3-opus-20240229` | 15, 75 | 1 |
| `claude-3-5-sonnet-20240620` | 3, 15 | 0.2 |
| `gemini-1.5-flash` | 0.175, 2.1 | 0.01 |
| `gemini-1.0-pro` | 0.5, 1.5 | 0.01 |
| `gemini-1.5-pro` | 1.75, 21 | 0.1 |

**Note the cost is estimated based on the token count of the input and output text.
The actual cost may vary due to the language and audio speed.**

### Recommended translation model

For english audio, we recommend using `gpt-3.5-turbo` or `gemini-1.5-flash`.

For non-english audio, we recommend using `claude-3-5-sonnet-20240620`.

## How it works

![](https://github.com/zh-plus/openlrc/blob/master/resources/how-it-works.png?raw=true)

To maintain context between translation segments, the process is sequential for each audio file.

[//]: # (## Comparison to https://microsoft.github.io/autogen/docs/notebooks/agentchat_video_transcript_translate_with_whisper/)

## Todo

- [x] [Efficiency] Batched translate/polish for GPT request (enable contextual ability).
- [x] [Efficiency] Concurrent support for GPT request.
- [x] [Translation Quality] Make translate prompt more robust according to https://github.com/openai/openai-cookbook.
- [x] [Feature] Automatically fix json encoder error using GPT.
- [x] [Efficiency] Asynchronously perform transcription and translation for multiple audio inputs.
- [x] [Quality] Improve batched translation/polish prompt according
to [gpt-subtrans](https://github.com/machinewrapped/gpt-subtrans).
- [x] [Feature] Input video support.
- [X] [Feature] Multiple output format support.
- [x] [Quality] Speech enhancement for input audio.
- [ ] [Feature] Preprocessor: Voice-music separation.
- [ ] [Feature] Align ground-truth transcription with audio.
- [ ] [Quality]
Use [multilingual language model](https://www.sbert.net/docs/pretrained_models.html#multi-lingual-models) to assess
translation quality.
- [ ] [Efficiency] Add Azure OpenAI Service support.
- [ ] [Quality] Use [claude](https://www.anthropic.com/index/introducing-claude) for translation.
- [ ] [Feature] Add local LLM support.
- [X] [Feature] Multiple translate engine (Anthropic, Microsoft, DeepL, Google, etc.) support.
- [ ] [**Feature**] Build
a [electron + fastapi](https://ivanyu2021.hashnode.dev/electron-django-desktop-app-integrate-javascript-and-python)
GUI for cross-platform application.
- [x] [Feature] Web-based [streamlit](https://streamlit.io/) GUI.
- [ ] Add [fine-tuned whisper-large-v2](https://huggingface.co/models?search=whisper-large-v2) models for common
languages.
- [x] [Feature] Add custom OpenAI & Anthropic endpoint support.
- [ ] [Feature] Add local translation model support (e.g. [SakuraLLM](https://github.com/SakuraLLM/Sakura-13B-Galgame)).
- [ ] [Quality] Construct translation quality benchmark test for each patch.
- [ ] [Others] Add transcribed examples.
- [ ] Song
- [ ] Podcast
- [ ] Audiobook

## Credits

- https://github.com/guillaumekln/faster-whisper
- https://github.com/m-bain/whisperX
- https://github.com/openai/openai-python
- https://github.com/openai/whisper
- https://github.com/machinewrapped/gpt-subtrans
- https://github.com/MicrosoftTranslator/Text-Translation-API-V3-Python
- https://github.com/streamlit/streamlit

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=zh-plus/Open-Lyrics&type=Date)](https://star-history.com/#zh-plus/Open-Lyrics&Date)